1yry
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | + | ==Crystal structure of human PNP complexed with MESG== | |
- | === | + | <StructureSection load='1yry' size='340' side='right' caption='[[1yry]], [[Resolution|resolution]] 2.80Å' scene=''> |
- | + | == Structural highlights == | |
+ | <table><tr><td colspan='2'>[[1yry]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1YRY OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1YRY FirstGlance]. <br> | ||
+ | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSG:7-METHYL-6-THIO-GUANOSINE'>MSG</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene><br> | ||
+ | <tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Purine-nucleoside_phosphorylase Purine-nucleoside phosphorylase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.4.2.1 2.4.2.1] </span></td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1yry FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1yry OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1yry RCSB], [http://www.ebi.ac.uk/pdbsum/1yry PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | == Disease == | ||
+ | [[http://www.uniprot.org/uniprot/PNPH_HUMAN PNPH_HUMAN]] Defects in PNP are the cause of purine nucleoside phosphorylase deficiency (PNPD) [MIM:[http://omim.org/entry/613179 613179]]. It leads to a severe T-cell immunodeficiency with neurologic disorder in children.<ref>PMID:3029074</ref> <ref>PMID:1384322</ref> <ref>PMID:8931706</ref> | ||
+ | == Function == | ||
+ | [[http://www.uniprot.org/uniprot/PNPH_HUMAN PNPH_HUMAN]] The purine nucleoside phosphorylases catalyze the phosphorolytic breakdown of the N-glycosidic bond in the beta-(deoxy)ribonucleoside molecules, with the formation of the corresponding free purine bases and pentose-1-phosphate.<ref>PMID:2104852</ref> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/yr/1yry_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of nucleosides and deoxynucleosides, generating ribose 1-phosphate and the purine base, which is an important step of purine catabolism pathway. The lack of such an activity in humans, owing to a genetic disorder, causes T-cell impairment, and drugs that inhibit this enzyme may have the potential of being utilized as modulators of the immunological system to treat leukemia, autoimmune diseases, and rejection in organ transplantation. Here, we describe kinetics and crystal structure of human PNP in complex with 7-methyl-6-thio-guanosine, a synthetic substrate, which is largely used in activity assays. Analysis of the structure identifies different protein conformational changes upon ligand binding, and comparison of kinetic and structural data permits an understanding of the effects of atomic substitution on key positions of the synthetic substrate and their consequences to enzyme binding and catalysis. Such knowledge may be helpful in designing new PNP inhibitors. | ||
- | + | Kinetics and crystal structure of human purine nucleoside phosphorylase in complex with 7-methyl-6-thio-guanosine.,Silva RG, Pereira JH, Canduri F, de Azevedo WF Jr, Basso LA, Santos DS Arch Biochem Biophys. 2005 Oct 1;442(1):49-58. PMID:16154528<ref>PMID:16154528</ref> | |
- | + | ||
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | == | + | ==See Also== |
- | [[ | + | *[[Purine nucleoside phosphorylase|Purine nucleoside phosphorylase]] |
- | + | == References == | |
- | == | + | <references/> |
- | + | __TOC__ | |
+ | </StructureSection> | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: Purine-nucleoside phosphorylase]] | [[Category: Purine-nucleoside phosphorylase]] |
Revision as of 21:54, 29 September 2014
Crystal structure of human PNP complexed with MESG
|