2a1t

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
-
{{STRUCTURE_2a1t| PDB=2a1t | SCENE= }}
+
==Structure of the human MCAD:ETF E165betaA complex==
-
===Structure of the human MCAD:ETF E165betaA complex===
+
<StructureSection load='2a1t' size='340' side='right' caption='[[2a1t]], [[Resolution|resolution]] 2.80&Aring;' scene=''>
-
{{ABSTRACT_PUBMED_15975918}}
+
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[2a1t]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2A1T OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2A1T FirstGlance]. <br>
 +
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=AMP:ADENOSINE+MONOPHOSPHATE'>AMP</scene>, <scene name='pdbligand=FAD:FLAVIN-ADENINE+DINUCLEOTIDE'>FAD</scene><br>
 +
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1t9g|1t9g]], [[2a1u|2a1u]]</td></tr>
 +
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Acyl-CoA_dehydrogenase Acyl-CoA dehydrogenase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.3.99.3 1.3.99.3] </span></td></tr>
 +
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2a1t FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2a1t OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2a1t RCSB], [http://www.ebi.ac.uk/pdbsum/2a1t PDBsum]</span></td></tr>
 +
<table>
 +
== Disease ==
 +
[[http://www.uniprot.org/uniprot/ACADM_HUMAN ACADM_HUMAN]] Defects in ACADM are the cause of acyl-CoA dehydrogenase medium-chain deficiency (ACADMD) [MIM:[http://omim.org/entry/201450 201450]]. It is an autosomal recessive disease which causes fasting hypoglycemia, hepatic dysfunction, and encephalopathy, often resulting in death in infancy.<ref>PMID:2393404</ref> <ref>PMID:2394825</ref> <ref>PMID:2251268</ref> <ref>PMID:1684086</ref> <ref>PMID:1902818</ref> <ref>PMID:1671131</ref> <ref>PMID:8198141</ref> <ref>PMID:7603790</ref> <ref>PMID:7929823</ref> <ref>PMID:9158144</ref> <ref>PMID:9882619</ref> <ref>PMID:10767181</ref> <ref>PMID:11349232</ref> <ref>PMID:11409868</ref> <ref>PMID:11486912</ref> [[http://www.uniprot.org/uniprot/ETFB_HUMAN ETFB_HUMAN]] Defects in ETFB are the cause of glutaric aciduria type 2B (GA2B) [MIM:[http://omim.org/entry/231680 231680]]. GA2B is an autosomal recessively inherited disorder of fatty acid, amino acid, and choline metabolism. It is characterized by multiple acyl-CoA dehydrogenase deficiencies resulting in large excretion not only of glutaric acid, but also of lactic, ethylmalonic, butyric, isobutyric, 2-methyl-butyric, and isovaleric acids.<ref>PMID:12815589</ref> <ref>PMID:7912128</ref> [[http://www.uniprot.org/uniprot/ETFA_HUMAN ETFA_HUMAN]] Defects in ETFA are the cause of glutaric aciduria type 2A (GA2A) [MIM:[http://omim.org/entry/231680 231680]]; also known as glutaricaciduria IIA. GA2A is an autosomal recessively inherited disorder of fatty acid, amino acid, and choline metabolism. It is characterized by multiple acyl-CoA dehydrogenase deficiencies resulting in large excretion not only of glutaric acid, but also of lactic, ethylmalonic, butyric, isobutyric, 2-methyl-butyric, and isovaleric acids.<ref>PMID:1882842</ref> <ref>PMID:1430199</ref>
 +
== Function ==
 +
[[http://www.uniprot.org/uniprot/ACADM_HUMAN ACADM_HUMAN]] This enzyme is specific for acyl chain lengths of 4 to 16. [[http://www.uniprot.org/uniprot/ETFB_HUMAN ETFB_HUMAN]] The electron transfer flavoprotein serves as a specific electron acceptor for several dehydrogenases, including five acyl-CoA dehydrogenases, glutaryl-CoA and sarcosine dehydrogenase. It transfers the electrons to the main mitochondrial respiratory chain via ETF-ubiquinone oxidoreductase (ETF dehydrogenase). [[http://www.uniprot.org/uniprot/ETFA_HUMAN ETFA_HUMAN]] The electron transfer flavoprotein serves as a specific electron acceptor for several dehydrogenases, including five acyl-CoA dehydrogenases, glutaryl-CoA and sarcosine dehydrogenase. It transfers the electrons to the main mitochondrial respiratory chain via ETF-ubiquinone oxidoreductase (ETF dehydrogenase).
 +
== Evolutionary Conservation ==
 +
[[Image:Consurf_key_small.gif|200px|right]]
 +
Check<jmol>
 +
<jmolCheckbox>
 +
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/a1/2a1t_consurf.spt"</scriptWhenChecked>
 +
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
 +
<text>to colour the structure by Evolutionary Conservation</text>
 +
</jmolCheckbox>
 +
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
 +
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Crystal structures of protein complexes with electron-transferring flavoprotein (ETF) have revealed a dual protein-protein interface with one region serving as anchor while the ETF FAD domain samples available space within the complex. We show that mutation of the conserved Glu-165beta in human ETF leads to drastically modulated rates of interprotein electron transfer with both medium chain acyl-CoA dehydrogenase and dimethylglycine dehydrogenase. The crystal structure of free E165betaA ETF is essentially identical to that of wild-type ETF, but the crystal structure of the E165betaA ETF.medium chain acyl-CoA dehydrogenase complex reveals clear electron density for the FAD domain in a position optimal for fast interprotein electron transfer. Based on our observations, we present a dynamic multistate model for conformational sampling that for the wild-type ETF. medium chain acyl-CoA dehydrogenase complex involves random motion between three distinct positions for the ETF FAD domain. ETF Glu-165beta plays a key role in stabilizing positions incompatible with fast interprotein electron transfer, thus ensuring high rates of complex dissociation.
-
==Disease==
+
Stabilization of non-productive conformations underpins rapid electron transfer to electron-transferring flavoprotein.,Toogood HS, van Thiel A, Scrutton NS, Leys D J Biol Chem. 2005 Aug 26;280(34):30361-6. Epub 2005 Jun 23. PMID:15975918<ref>PMID:15975918</ref>
-
[[http://www.uniprot.org/uniprot/ACADM_HUMAN ACADM_HUMAN]] Defects in ACADM are the cause of acyl-CoA dehydrogenase medium-chain deficiency (ACADMD) [MIM:[http://omim.org/entry/201450 201450]]. It is an autosomal recessive disease which causes fasting hypoglycemia, hepatic dysfunction, and encephalopathy, often resulting in death in infancy.<ref>PMID:2393404</ref><ref>PMID:2394825</ref><ref>PMID:2251268</ref><ref>PMID:1684086</ref><ref>PMID:1902818</ref><ref>PMID:1671131</ref><ref>PMID:8198141</ref><ref>PMID:7603790</ref><ref>PMID:7929823</ref><ref>PMID:9158144</ref><ref>PMID:9882619</ref><ref>PMID:10767181</ref><ref>PMID:11349232</ref><ref>PMID:11409868</ref><ref>PMID:11486912</ref> [[http://www.uniprot.org/uniprot/ETFB_HUMAN ETFB_HUMAN]] Defects in ETFB are the cause of glutaric aciduria type 2B (GA2B) [MIM:[http://omim.org/entry/231680 231680]]. GA2B is an autosomal recessively inherited disorder of fatty acid, amino acid, and choline metabolism. It is characterized by multiple acyl-CoA dehydrogenase deficiencies resulting in large excretion not only of glutaric acid, but also of lactic, ethylmalonic, butyric, isobutyric, 2-methyl-butyric, and isovaleric acids.<ref>PMID:12815589</ref><ref>PMID:7912128</ref> [[http://www.uniprot.org/uniprot/ETFA_HUMAN ETFA_HUMAN]] Defects in ETFA are the cause of glutaric aciduria type 2A (GA2A) [MIM:[http://omim.org/entry/231680 231680]]; also known as glutaricaciduria IIA. GA2A is an autosomal recessively inherited disorder of fatty acid, amino acid, and choline metabolism. It is characterized by multiple acyl-CoA dehydrogenase deficiencies resulting in large excretion not only of glutaric acid, but also of lactic, ethylmalonic, butyric, isobutyric, 2-methyl-butyric, and isovaleric acids.<ref>PMID:1882842</ref><ref>PMID:1430199</ref>
+
-
==Function==
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
[[http://www.uniprot.org/uniprot/ACADM_HUMAN ACADM_HUMAN]] This enzyme is specific for acyl chain lengths of 4 to 16. [[http://www.uniprot.org/uniprot/ETFB_HUMAN ETFB_HUMAN]] The electron transfer flavoprotein serves as a specific electron acceptor for several dehydrogenases, including five acyl-CoA dehydrogenases, glutaryl-CoA and sarcosine dehydrogenase. It transfers the electrons to the main mitochondrial respiratory chain via ETF-ubiquinone oxidoreductase (ETF dehydrogenase). [[http://www.uniprot.org/uniprot/ETFA_HUMAN ETFA_HUMAN]] The electron transfer flavoprotein serves as a specific electron acceptor for several dehydrogenases, including five acyl-CoA dehydrogenases, glutaryl-CoA and sarcosine dehydrogenase. It transfers the electrons to the main mitochondrial respiratory chain via ETF-ubiquinone oxidoreductase (ETF dehydrogenase).
+
</div>
-
 
+
-
==About this Structure==
+
-
[[2a1t]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2A1T OCA].
+
==See Also==
==See Also==
*[[Acyl-CoA dehydrogenase|Acyl-CoA dehydrogenase]]
*[[Acyl-CoA dehydrogenase|Acyl-CoA dehydrogenase]]
-
 
+
== References ==
-
==Reference==
+
<references/>
-
<ref group="xtra">PMID:015975918</ref><references group="xtra"/><references/>
+
__TOC__
 +
</StructureSection>
[[Category: Acyl-CoA dehydrogenase]]
[[Category: Acyl-CoA dehydrogenase]]
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]

Revision as of 02:13, 30 September 2014

Structure of the human MCAD:ETF E165betaA complex

2a1t, resolution 2.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Views
Personal tools
Navigation
Toolbox