2ggm
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | + | ==Human centrin 2 xeroderma pigmentosum group C protein complex== | |
- | ===Human centrin 2 xeroderma pigmentosum group C protein | + | <StructureSection load='2ggm' size='340' side='right' caption='[[2ggm]], [[Resolution|resolution]] 2.35Å' scene=''> |
- | + | == Structural highlights == | |
+ | <table><tr><td colspan='2'>[[2ggm]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2GGM OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2GGM FirstGlance]. <br> | ||
+ | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene><br> | ||
+ | <tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | ||
+ | <tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CETN2, CALT, CEN2 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens])</td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2ggm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2ggm OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2ggm RCSB], [http://www.ebi.ac.uk/pdbsum/2ggm PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | == Disease == | ||
+ | [[http://www.uniprot.org/uniprot/XPC_HUMAN XPC_HUMAN]] Defects in XPC are a cause of xeroderma pigmentosum complementation group C (XP-C) [MIM:[http://omim.org/entry/278720 278720]]; also known as xeroderma pigmentosum III (XP3). XP-C is a rare human autosomal recessive disease characterized by solar sensitivity, high predisposition for developing cancers on areas exposed to sunlight and, in some cases, neurological abnormalities.<ref>PMID:19609301</ref> <ref>PMID:17682058</ref> <ref>PMID:17355181</ref> <ref>PMID:8298653</ref> <ref>PMID:10766188</ref> | ||
+ | == Function == | ||
+ | [[http://www.uniprot.org/uniprot/CETN2_HUMAN CETN2_HUMAN]] Plays a fundamental role in microtubule-organizing center structure and function. Required for centriole duplication and correct spindle formation. Has a role in regulating cytokinesis and genome stability via cooperation with CALM1 and CEP110.<ref>PMID:8248209</ref> <ref>PMID:11279143</ref> <ref>PMID:12176356</ref> <ref>PMID:15964821</ref> <ref>PMID:17154534</ref> <ref>PMID:16760425</ref> Involved in global genome nucleotide excision repair (GG-NER) by acting as component of the XPC complex. Cooperatively with RAD23B appears to stabilize XPC. In vitro, stimulates DNA binding of the XPC:RAD23B dimer.<ref>PMID:8248209</ref> <ref>PMID:11279143</ref> <ref>PMID:12176356</ref> <ref>PMID:15964821</ref> <ref>PMID:17154534</ref> <ref>PMID:16760425</ref> The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex. The XPC complex recognizes a wide spectrum of damaged DNA characterized by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single stranded overhangs. The orientation of XPC complex binding appears to be crucial for inducing a productive NER. XPC complex is proposed to recognize and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery. Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair.<ref>PMID:8248209</ref> <ref>PMID:11279143</ref> <ref>PMID:12176356</ref> <ref>PMID:15964821</ref> <ref>PMID:17154534</ref> <ref>PMID:16760425</ref> [[http://www.uniprot.org/uniprot/XPC_HUMAN XPC_HUMAN]] Involved in global genome nucleotide excision repair (GG-NER) by acting as damage sensing and DNA-binding factor component of the XPC complex. Has only a low DNA repair activity by itself which is stimulated by RAD23B and RAD23A. Has a preference to bind DNA containing a short single-stranded segment but not to damaged oligonucleotides. This feature is proposed to be related to a dynamic sensor function: XPC can rapidly screen duplex DNA for non-hydrogen-bonded bases by forming a transient nucleoprotein intermediate complex which matures into a stable recognition complex through an intrinsic single-stranded DNA-binding activity.<ref>PMID:9734359</ref> <ref>PMID:10734143</ref> <ref>PMID:10873465</ref> <ref>PMID:12509299</ref> <ref>PMID:12547395</ref> <ref>PMID:19609301</ref> <ref>PMID:19941824</ref> <ref>PMID:20649465</ref> <ref>PMID:20028083</ref> <ref>PMID:20798892</ref> The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex. The XPC complex recognizes a wide spectrum of damaged DNA characterized by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single stranded overhangs. The orientation of XPC complex binding appears to be crucial for inducing a productive NER. XPC complex is proposed to recognize and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery. Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair. In vitro, the XPC:RAD23B dimer is sufficient to initiate NER; it preferentially binds to cisplatin and UV-damaged double-stranded DNA and also binds to a variety of chemically and structurally diverse DNA adducts. XPC:RAD23B contacts DNA both 5' and 3' of a cisplatin lesion with a preference for the 5' side. XPC:RAD23B induces a bend in DNA upon binding. XPC:RAD23B stimulates the activity of DNA glycosylases TDG and SMUG1.<ref>PMID:9734359</ref> <ref>PMID:10734143</ref> <ref>PMID:10873465</ref> <ref>PMID:12509299</ref> <ref>PMID:12547395</ref> <ref>PMID:19609301</ref> <ref>PMID:19941824</ref> <ref>PMID:20649465</ref> <ref>PMID:20028083</ref> <ref>PMID:20798892</ref> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/gg/2ggm_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Human centrin-2 plays a key role in centrosome function and stimulates nucleotide excision repair by binding to the xeroderma pigmentosum group C protein. To determine the structure of human centrin-2 and to develop an understanding of molecular interactions between centrin and xeroderma pigmentosum group C protein, we characterized the crystal structure of calcium-loaded full-length centrin-2 complexed with a xeroderma pigmentosum group C peptide. Our structure shows that the carboxyl-terminal domain of centrin-2 binds this peptide and two calcium atoms, whereas the amino-terminal lobe is in a closed conformation positioned distantly by an ordered alpha-helical linker. A stretch of the amino-terminal domain unique to centrins appears disordered. Two xeroderma pigmentosum group C peptides both bound to centrin-2 also interact to form an alpha-helical coiled-coil. The interface between centrin-2 and each peptide is predominantly nonpolar, and key hydrophobic residues of XPC have been identified that lead us to propose a novel binding motif for centrin. | ||
- | + | The structure of the human centrin 2-xeroderma pigmentosum group C protein complex.,Thompson JR, Ryan ZC, Salisbury JL, Kumar R J Biol Chem. 2006 Jul 7;281(27):18746-52. Epub 2006 Apr 20. PMID:16627479<ref>PMID:16627479</ref> | |
- | + | ||
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | == References == | |
- | == | + | <references/> |
- | + | __TOC__ | |
- | + | </StructureSection> | |
- | + | ||
- | + | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: Thompson, J R.]] | [[Category: Thompson, J R.]] |
Revision as of 09:32, 30 September 2014
Human centrin 2 xeroderma pigmentosum group C protein complex
|