2jmw
From Proteopedia
(Difference between revisions)
m (Protected "2jmw" [edit=sysop:move=sysop]) |
|||
Line 1: | Line 1: | ||
- | [[ | + | ==Structure of DNA-Binding Domain of Arabidopsis GT-1== |
+ | <StructureSection load='2jmw' size='340' side='right' caption='[[2jmw]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[2jmw]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Arabidopsis_thaliana Arabidopsis thaliana]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2JMW OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2JMW FirstGlance]. <br> | ||
+ | </td></tr><tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">T6J4.18 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=3702 Arabidopsis thaliana])</td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2jmw FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2jmw OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2jmw RCSB], [http://www.ebi.ac.uk/pdbsum/2jmw PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/jm/2jmw_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | GT-1 is a plant transcription factor that binds to one of the cis-acting elements, BoxII, which resides within the upstream promoter region of light-responsive genes. GT-1 was assumed to act as a molecular switch modulated through Ca(2+)-dependent phosphorylation/dephosphorylation in response to light signals. It was shown previously that the phosphorylation of threonine 133 in the DNA-binding domain (DBD) of GT-1 results in enhancement of the BoxII-binding activity. Interestingly, point mutation of Thr133 to Asp also enhances the BoxII-binding activity. Here, we report the solution structures of hypothetical trihelix DBDs of the wild-type (WT) and a phosphomimetic mutant (T133D) of GT-1. First, we demonstrated that the isolated DBD of GT-1 alone has the ability to bind to DNA, and that the T133D mutation of the isolated DBD can enhance the DNA-binding affinity. The structures of these DBDs turned out to be almost identical. The structural topology resembles that of Myb DBDs, but all alpha-helices are longer in GT-1. Our NMR titration experiments suggested that these longer alpha-helices yield an enlarged DNA-binding surface. The phosphorylation site is located at the N-terminus of the third alpha-helix. We built a structural model of the T133D DBD:BoxII complex with the program HADDOCK. The model resembles the structure of the TRF1 DBD:telomeric DNA complex. Interestingly, the model implies that the phosphorylated side chain may directly interact with the bases of DNA. On the basis of our findings, we propose a mechanism by which the DNA-binding activity toward BoxII of the phosphorylated GT-1 could be enhanced. | ||
- | + | Solution structures of the trihelix DNA-binding domains of the wild-type and a phosphomimetic mutant of Arabidopsis GT-1: mechanism for an increase in DNA-binding affinity through phosphorylation.,Nagata T, Niyada E, Fujimoto N, Nagasaki Y, Noto K, Miyanoiri Y, Murata J, Hiratsuka K, Katahira M Proteins. 2010 Nov 1;78(14):3033-47. PMID:20717979<ref>PMID:20717979</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | == References == | |
- | + | <references/> | |
- | + | __TOC__ | |
- | + | </StructureSection> | |
- | + | ||
- | == | + | |
- | < | + | |
[[Category: Arabidopsis thaliana]] | [[Category: Arabidopsis thaliana]] | ||
[[Category: Hiratsuka, K.]] | [[Category: Hiratsuka, K.]] |
Revision as of 10:50, 30 September 2014
Structure of DNA-Binding Domain of Arabidopsis GT-1
|