2pui
From Proteopedia
(Difference between revisions)
m (Protected "2pui" [edit=sysop:move=sysop]) |
|||
Line 1: | Line 1: | ||
- | [[ | + | ==Structures of 5-methylthioribose kinase reveal substrate specificity and unusual mode of nucleotide binding== |
+ | <StructureSection load='2pui' size='340' side='right' caption='[[2pui]], [[Resolution|resolution]] 2.20Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[2pui]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Bacillus_subtilis Bacillus subtilis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2PUI OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2PUI FirstGlance]. <br> | ||
+ | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=CPS:3-[(3-CHOLAMIDOPROPYL)DIMETHYLAMMONIO]-1-PROPANESULFONATE'>CPS</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene><br> | ||
+ | <tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2pu8|2pu8]], [[2pul|2pul]], [[2pun|2pun]], [[2pup|2pup]]</td></tr> | ||
+ | <tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">mtnK, ykrT ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1423 Bacillus subtilis])</td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/S-methyl-5-thioribose_kinase S-methyl-5-thioribose kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.1.100 2.7.1.100] </span></td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2pui FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2pui OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2pui RCSB], [http://www.ebi.ac.uk/pdbsum/2pui PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/pu/2pui_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The methionine salvage pathway is ubiquitous in all organisms, but metabolic variations exist between bacteria and mammals. 5-Methylthioribose (MTR) kinase is a key enzyme in methionine salvage in bacteria and the absence of a mammalian homolog suggests that it is a good target for the design of novel antibiotics. The structures of the apo-form of Bacillus subtilis MTR kinase, as well as its ADP, ADP-PO(4), AMPPCP, and AMPPCP-MTR complexes have been determined. MTR kinase has a bilobal eukaryotic protein kinase fold but exhibits a number of unique features. The protein lacks the DFG motif typically found at the beginning of the activation loop and instead coordinates magnesium via a DXE motif (Asp(250)-Glu(252)). In addition, the glycine-rich loop of the protein, analogous to the "Gly triad" in protein kinases, does not interact extensively with the nucleotide. The MTR substrate-binding site consists of Asp(233) of the catalytic HGD motif, a novel twin arginine motif (Arg(340)/Arg(341)), and a semi-conserved W-loop, which appears to regulate MTR binding specificity. No lobe closure is observed for MTR kinase upon substrate binding. This is probably because the enzyme lacks the lobe closure/inducing interactions between the C-lobe of the protein and the ribosyl moiety of the nucleotide that are typically responsible for lobe closure in protein kinases. The current structures suggest that MTR kinase has a dissociative mechanism. | ||
- | + | Structures of 5-methylthioribose kinase reveal substrate specificity and unusual mode of nucleotide binding.,Ku SY, Yip P, Cornell KA, Riscoe MK, Behr JB, Guillerm G, Howell PL J Biol Chem. 2007 Jul 27;282(30):22195-206. Epub 2007 May 23. PMID:17522047<ref>PMID:17522047</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | == References == | |
- | + | <references/> | |
- | + | __TOC__ | |
- | + | </StructureSection> | |
- | + | ||
- | == | + | |
- | < | + | |
[[Category: Bacillus subtilis]] | [[Category: Bacillus subtilis]] | ||
[[Category: S-methyl-5-thioribose kinase]] | [[Category: S-methyl-5-thioribose kinase]] |
Revision as of 19:39, 30 September 2014
Structures of 5-methylthioribose kinase reveal substrate specificity and unusual mode of nucleotide binding
|