2nll

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
-
{{STRUCTURE_2nll| PDB=2nll | SCENE= }}
+
==RETINOID X RECEPTOR-THYROID HORMONE RECEPTOR DNA-BINDING DOMAIN HETERODIMER BOUND TO THYROID RESPONSE ELEMENT DNA==
-
===RETINOID X RECEPTOR-THYROID HORMONE RECEPTOR DNA-BINDING DOMAIN HETERODIMER BOUND TO THYROID RESPONSE ELEMENT DNA===
+
<StructureSection load='2nll' size='340' side='right' caption='[[2nll]], [[Resolution|resolution]] 1.90&Aring;' scene=''>
-
{{ABSTRACT_PUBMED_7746322}}
+
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[2nll]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2NLL OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2NLL FirstGlance]. <br>
 +
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene><br>
 +
<tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=5IU:5-IODO-2-DEOXYURIDINE-5-MONOPHOSPHATE'>5IU</scene></td></tr>
 +
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2nll FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2nll OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2nll RCSB], [http://www.ebi.ac.uk/pdbsum/2nll PDBsum]</span></td></tr>
 +
<table>
 +
== Disease ==
 +
[[http://www.uniprot.org/uniprot/THB1_HUMAN THB1_HUMAN]] Defects in THRB are the cause of generalized thyroid hormone resistance (GTHR) [MIM:[http://omim.org/entry/188570 188570]]. GTHR is a disease characterized by goiter, abnormal mental functions, increased susceptibility to infections, abnormal growth and bone maturation, tachycardia and deafness. Affected individuals may also have attention deficit-hyperactivity disorders (ADHD) and language difficulties. GTHR patients also have high levels of circulating thyroid hormones (T3-T4), with normal or slightly elevated thyroid stimulating hormone (TSH).<ref>PMID:2510172</ref> <ref>PMID:2153155</ref> <ref>PMID:1846005</ref> <ref>PMID:1661299</ref> <ref>PMID:1653889</ref> <ref>PMID:1563081</ref> <ref>PMID:1314846</ref> <ref>PMID:1619012</ref> <ref>PMID:1587388</ref> <ref>PMID:1324420</ref> <ref>PMID:8514853</ref> <ref>PMID:8175986</ref> <ref>PMID:7833659</ref> <ref>PMID:8664910</ref> <ref>PMID:8889584</ref> <ref>PMID:10660344</ref> <ref>PMID:16804041</ref> <ref>PMID:19268523</ref> Defects in THRB are the cause of generalized thyroid hormone resistance autosomal recessive (GTHRAR) [MIM:[http://omim.org/entry/274300 274300]]. An autosomal recessive disorder characterized by goiter, clinical euthyroidism, end-organ unresponsiveness to thyroid hormone, abnormal growth and bone maturation, and deafness. Patients also have high levels of circulating thyroid hormones, with elevated thyroid stimulating hormone. Defects in THRB are the cause of selective pituitary thyroid hormone resistance (PRTH) [MIM:[http://omim.org/entry/145650 145650]]; also known as familial hyperthyroidism due to inappropriate thyrotropin secretion. PRTH is a variant form of thyroid hormone resistance and is characterized by clinical hyperthyroidism, with elevated free thyroid hormones, but inappropriately normal serum TSH. Unlike GRTH, where the syndrome usually segregates with a dominant allele, the mode of inheritance in PRTH has not been established.<ref>PMID:7528740</ref> <ref>PMID:8381821</ref>
 +
== Function ==
 +
[[http://www.uniprot.org/uniprot/THB1_HUMAN THB1_HUMAN]] High affinity receptor for triiodothyronine.<ref>PMID:17418816</ref> [[http://www.uniprot.org/uniprot/RXRA_HUMAN RXRA_HUMAN]] Receptor for retinoic acid. Retinoic acid receptors bind as heterodimers to their target response elements in response to their ligands, all-trans or 9-cis retinoic acid, and regulate gene expression in various biological processes. The RAR/RXR heterodimers bind to the retinoic acid response elements (RARE) composed of tandem 5'-AGGTCA-3' sites known as DR1-DR5. The high affinity ligand for RXRs is 9-cis retinoic acid. RXRA serves as a common heterodimeric partner for a number of nuclear receptors. The RXR/RAR heterodimers bind to the retinoic acid response elements (RARE) composed of tandem 5'-AGGTCA-3' sites known as DR1-DR5. In the absence of ligand, the RXR-RAR heterodimers associate with a multiprotein complex containing transcription corepressors that induce histone acetylation, chromatin condensation and transcriptional suppression. On ligand binding, the corepressors dissociate from the receptors and associate with the coactivators leading to transcriptional activation. The RXRA/PPARA heterodimer is required for PPARA transcriptional activity on fatty acid oxidation genes such as ACOX1 and the P450 system genes.<ref>PMID:10195690</ref> <ref>PMID:11162439</ref> <ref>PMID:11915042</ref> <ref>PMID:20215566</ref>
 +
== Evolutionary Conservation ==
 +
[[Image:Consurf_key_small.gif|200px|right]]
 +
Check<jmol>
 +
<jmolCheckbox>
 +
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/nl/2nll_consurf.spt"</scriptWhenChecked>
 +
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
 +
<text>to colour the structure by Evolutionary Conservation</text>
 +
</jmolCheckbox>
 +
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
 +
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Nuclear receptor heterodimers recognize response elements composed of two direct repeats of the consensus sequence 5'-AGGTCA-3' separated by one to five base pairs. The 1.9 A crystal structure of the complex formed by the DNA-binding domains of the 9-cis retinoic acid receptor and thyroid hormone receptor bound to a thyroid-response element shows that the subunits interact through a DNA-supported interface involving the carboxy-terminal extension of the DNA-binding domain of the thyroid hormone receptor. The stereochemistry suggests a mechanism by which heterodimers recognize the inter-half-site spacing between direct repeats.
-
==Disease==
+
Structural determinants of nuclear receptor assembly on DNA direct repeats.,Rastinejad F, Perlmann T, Evans RM, Sigler PB Nature. 1995 May 18;375(6528):203-11. PMID:7746322<ref>PMID:7746322</ref>
-
[[http://www.uniprot.org/uniprot/THB1_HUMAN THB1_HUMAN]] Defects in THRB are the cause of generalized thyroid hormone resistance (GTHR) [MIM:[http://omim.org/entry/188570 188570]]. GTHR is a disease characterized by goiter, abnormal mental functions, increased susceptibility to infections, abnormal growth and bone maturation, tachycardia and deafness. Affected individuals may also have attention deficit-hyperactivity disorders (ADHD) and language difficulties. GTHR patients also have high levels of circulating thyroid hormones (T3-T4), with normal or slightly elevated thyroid stimulating hormone (TSH).<ref>PMID:2510172</ref><ref>PMID:2153155</ref><ref>PMID:1846005</ref><ref>PMID:1661299</ref><ref>PMID:1653889</ref><ref>PMID:1563081</ref><ref>PMID:1314846</ref><ref>PMID:1619012</ref><ref>PMID:1587388</ref><ref>PMID:1324420</ref><ref>PMID:8514853</ref><ref>PMID:8175986</ref><ref>PMID:7833659</ref><ref>PMID:8664910</ref><ref>PMID:8889584</ref><ref>PMID:10660344</ref><ref>PMID:16804041</ref><ref>PMID:19268523</ref> Defects in THRB are the cause of generalized thyroid hormone resistance autosomal recessive (GTHRAR) [MIM:[http://omim.org/entry/274300 274300]]. An autosomal recessive disorder characterized by goiter, clinical euthyroidism, end-organ unresponsiveness to thyroid hormone, abnormal growth and bone maturation, and deafness. Patients also have high levels of circulating thyroid hormones, with elevated thyroid stimulating hormone. Defects in THRB are the cause of selective pituitary thyroid hormone resistance (PRTH) [MIM:[http://omim.org/entry/145650 145650]]; also known as familial hyperthyroidism due to inappropriate thyrotropin secretion. PRTH is a variant form of thyroid hormone resistance and is characterized by clinical hyperthyroidism, with elevated free thyroid hormones, but inappropriately normal serum TSH. Unlike GRTH, where the syndrome usually segregates with a dominant allele, the mode of inheritance in PRTH has not been established.<ref>PMID:7528740</ref><ref>PMID:8381821</ref>
+
-
==Function==
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
[[http://www.uniprot.org/uniprot/THB1_HUMAN THB1_HUMAN]] High affinity receptor for triiodothyronine.<ref>PMID:17418816</ref> [[http://www.uniprot.org/uniprot/RXRA_HUMAN RXRA_HUMAN]] Receptor for retinoic acid. Retinoic acid receptors bind as heterodimers to their target response elements in response to their ligands, all-trans or 9-cis retinoic acid, and regulate gene expression in various biological processes. The RAR/RXR heterodimers bind to the retinoic acid response elements (RARE) composed of tandem 5'-AGGTCA-3' sites known as DR1-DR5. The high affinity ligand for RXRs is 9-cis retinoic acid. RXRA serves as a common heterodimeric partner for a number of nuclear receptors. The RXR/RAR heterodimers bind to the retinoic acid response elements (RARE) composed of tandem 5'-AGGTCA-3' sites known as DR1-DR5. In the absence of ligand, the RXR-RAR heterodimers associate with a multiprotein complex containing transcription corepressors that induce histone acetylation, chromatin condensation and transcriptional suppression. On ligand binding, the corepressors dissociate from the receptors and associate with the coactivators leading to transcriptional activation. The RXRA/PPARA heterodimer is required for PPARA transcriptional activity on fatty acid oxidation genes such as ACOX1 and the P450 system genes.<ref>PMID:10195690</ref><ref>PMID:11162439</ref><ref>PMID:11915042</ref><ref>PMID:20215566</ref>
+
</div>
-
 
+
-
==About this Structure==
+
-
[[2nll]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2NLL OCA].
+
==See Also==
==See Also==
*[[Hormone|Hormone]]
*[[Hormone|Hormone]]
-
 
+
== References ==
-
==Reference==
+
<references/>
-
<ref group="xtra">PMID:007746322</ref><ref group="xtra">PMID:014702633</ref><ref group="xtra">PMID:015048824</ref><ref group="xtra">PMID:017397256</ref><references group="xtra"/><references/>
+
__TOC__
 +
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Evans, R M.]]
[[Category: Evans, R M.]]

Revision as of 20:07, 30 September 2014

RETINOID X RECEPTOR-THYROID HORMONE RECEPTOR DNA-BINDING DOMAIN HETERODIMER BOUND TO THYROID RESPONSE ELEMENT DNA

2nll, resolution 1.90Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Views
Personal tools
Navigation
Toolbox