2wsy
From Proteopedia
(Difference between revisions)
m (Protected "2wsy" [edit=sysop:move=sysop]) |
|||
| Line 1: | Line 1: | ||
| - | [[ | + | ==CRYSTAL STRUCTURE OF WILD-TYPE TRYPTOPHAN SYNTHASE== |
| + | <StructureSection load='2wsy' size='340' side='right' caption='[[2wsy]], [[Resolution|resolution]] 3.05Å' scene=''> | ||
| + | == Structural highlights == | ||
| + | <table><tr><td colspan='2'>[[2wsy]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Salmonella_enterica_subsp._enterica_serovar_typhimurium Salmonella enterica subsp. enterica serovar typhimurium]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2WSY OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2WSY FirstGlance]. <br> | ||
| + | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=PLP:PYRIDOXAL-5-PHOSPHATE'>PLP</scene><br> | ||
| + | <tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Tryptophan_synthase Tryptophan synthase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=4.2.1.20 4.2.1.20] </span></td></tr> | ||
| + | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2wsy FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2wsy OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2wsy RCSB], [http://www.ebi.ac.uk/pdbsum/2wsy PDBsum]</span></td></tr> | ||
| + | <table> | ||
| + | == Evolutionary Conservation == | ||
| + | [[Image:Consurf_key_small.gif|200px|right]] | ||
| + | Check<jmol> | ||
| + | <jmolCheckbox> | ||
| + | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ws/2wsy_consurf.spt"</scriptWhenChecked> | ||
| + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
| + | <text>to colour the structure by Evolutionary Conservation</text> | ||
| + | </jmolCheckbox> | ||
| + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
| + | <div style="clear:both"></div> | ||
| + | <div style="background-color:#fffaf0;"> | ||
| + | == Publication Abstract from PubMed == | ||
| + | Crystal structures of wild-type tryptophan synthase alpha2beta2 complexes from Salmonella typhimurium were determined to investigate the mechanism of allosteric activation of the alpha-reaction by the aminoacrylate intermediate formed at the beta-active site. Using a flow cell, the aminoacrylate (A-A) intermediate of the beta-reaction () was generated in the crystal under steady state conditions in the presence of serine and the alpha-site inhibitor 5-fluoroindole propanol phosphate (F-IPP). A model for the conformation of the Schiff base between the aminoacrylate and the beta-subunit cofactor pyridoxal phosphate (PLP) is presented. The structure is compared with structures of the enzyme determined in the absence (TRPS) and presence (TRPSF-IPP) of F-IPP. A detailed model for binding of F-IPP to the alpha-subunit is presented. In contrast to findings by Hyde et al. [(1988) J. Biol. Chem. 263,17857-17871] and Rhee et al. [(1997) Biochemistry 36, 7664-7680], we find that the presence of an alpha-site alone ligand is sufficient for loop alphaL6 closure atop the alpha-active site. Part of this loop, alphaThr183, is important not only for positioning the catalytic alphaAsp60 but also for coordinating the concomitant ordering of loop alphaL2 upon F-IPP binding. On the basis of the three structures, a pathway for communication between the alpha- and beta-active sites has been established. The central element of this pathway is a newly defined rigid, but movable, domain that on one side interacts with the alpha-subunit via loop alphaL2 and on the other side with the beta-active site. These findings provide a structural basis for understanding the allosteric properties of tryptophan synthase. | ||
| - | + | Loop closure and intersubunit communication in tryptophan synthase.,Schneider TR, Gerhardt E, Lee M, Liang PH, Anderson KS, Schlichting I Biochemistry. 1998 Apr 21;37(16):5394-406. PMID:9548921<ref>PMID:9548921</ref> | |
| - | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
| - | + | </div> | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
==See Also== | ==See Also== | ||
*[[Tryptophan synthase|Tryptophan synthase]] | *[[Tryptophan synthase|Tryptophan synthase]] | ||
| - | + | == References == | |
| - | == | + | <references/> |
| - | < | + | __TOC__ |
| + | </StructureSection> | ||
[[Category: Salmonella enterica subsp. enterica serovar typhimurium]] | [[Category: Salmonella enterica subsp. enterica serovar typhimurium]] | ||
[[Category: Tryptophan synthase]] | [[Category: Tryptophan synthase]] | ||
Revision as of 01:33, 1 October 2014
CRYSTAL STRUCTURE OF WILD-TYPE TRYPTOPHAN SYNTHASE
| |||||||||||

