|
|
Line 1: |
Line 1: |
- | {{STRUCTURE_3bl1| PDB=3bl1 | SCENE= }}
| + | ==Carbonic anhydrase inhibitors. Sulfonamide diuretics revisited old leads for new applications== |
- | ===Carbonic anhydrase inhibitors. Sulfonamide diuretics revisited old leads for new applications===
| + | <StructureSection load='3bl1' size='340' side='right' caption='[[3bl1]], [[Resolution|resolution]] 2.10Å' scene=''> |
- | {{ABSTRACT_PUBMED_18374572}}
| + | == Structural highlights == |
| + | <table><tr><td colspan='2'>[[3bl1]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3BL1 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3BL1 FirstGlance]. <br> |
| + | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BL1:4-CHLORO-N-[(2S)-2-METHYL-2,3-DIHYDRO-1H-INDOL-1-YL]-3-SULFAMOYLBENZAMIDE'>BL1</scene>, <scene name='pdbligand=HG:MERCURY+(II)+ION'>HG</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene><br> |
| + | <tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2eu2|2eu2]], [[2eu3|2eu3]], [[3bl0|3bl0]]</td></tr> |
| + | <tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Carbonate_dehydratase Carbonate dehydratase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=4.2.1.1 4.2.1.1] </span></td></tr> |
| + | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3bl1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3bl1 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3bl1 RCSB], [http://www.ebi.ac.uk/pdbsum/3bl1 PDBsum]</span></td></tr> |
| + | <table> |
| + | == Disease == |
| + | [[http://www.uniprot.org/uniprot/CAH2_HUMAN CAH2_HUMAN]] Defects in CA2 are the cause of osteopetrosis autosomal recessive type 3 (OPTB3) [MIM:[http://omim.org/entry/259730 259730]]; also known as osteopetrosis with renal tubular acidosis, carbonic anhydrase II deficiency syndrome, Guibaud-Vainsel syndrome or marble brain disease. Osteopetrosis is a rare genetic disease characterized by abnormally dense bone, due to defective resorption of immature bone. The disorder occurs in two forms: a severe autosomal recessive form occurring in utero, infancy, or childhood, and a benign autosomal dominant form occurring in adolescence or adulthood. Autosomal recessive osteopetrosis is usually associated with normal or elevated amount of non-functional osteoclasts. OPTB3 is associated with renal tubular acidosis, cerebral calcification (marble brain disease) and in some cases with mental retardation.<ref>PMID:1928091</ref> <ref>PMID:1542674</ref> <ref>PMID:8834238</ref> <ref>PMID:9143915</ref> <ref>PMID:15300855</ref> |
| + | == Function == |
| + | [[http://www.uniprot.org/uniprot/CAH2_HUMAN CAH2_HUMAN]] Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Can hydrate cyanamide to urea. Involved in the regulation of fluid secretion into the anterior chamber of the eye.<ref>PMID:10550681</ref> <ref>PMID:11831900</ref> |
| + | == Evolutionary Conservation == |
| + | [[Image:Consurf_key_small.gif|200px|right]] |
| + | Check<jmol> |
| + | <jmolCheckbox> |
| + | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/bl/3bl1_consurf.spt"</scriptWhenChecked> |
| + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> |
| + | <text>to colour the structure by Evolutionary Conservation</text> |
| + | </jmolCheckbox> |
| + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. |
| + | <div style="clear:both"></div> |
| + | <div style="background-color:#fffaf0;"> |
| + | == Publication Abstract from PubMed == |
| + | Diuretics such as hydrochlorothiazide, hydroflumethiazide, quinethazone, metolazone, chlorthalidone, indapamide, furosemide, and bumetanide containing primary sulfamoyl moieties were reevaluated as inhibitors of 12 human carbonic anhydrases (hCAs, EC 4.2.1.1). These drugs considerably inhibit (low nanomolar range) some CA isozymes involved in critical physiologic processes, among the 16 present in vertebrates, for example, metolazone against CA VII, XII, and XIII, chlorthalidone against CA VB, VII, IX, XII, and XIII, indapamide against CA VII, IX, XII, and XIII, furosemide against CA I, II, and XIV, and bumetanide against CA IX and XII. The X-ray crystal structure of the hCA II-indapamide adduct was also resolved at high resolution. |
| | | |
- | ==Disease==
| + | Carbonic anhydrase inhibitors. Interaction of indapamide and related diuretics with 12 mammalian isozymes and X-ray crystallographic studies for the indapamide-isozyme II adduct.,Temperini C, Cecchi A, Scozzafava A, Supuran CT Bioorg Med Chem Lett. 2008 Apr 15;18(8):2567-73. Epub 2008 Mar 20. PMID:18374572<ref>PMID:18374572</ref> |
- | [[http://www.uniprot.org/uniprot/CAH2_HUMAN CAH2_HUMAN]] Defects in CA2 are the cause of osteopetrosis autosomal recessive type 3 (OPTB3) [MIM:[http://omim.org/entry/259730 259730]]; also known as osteopetrosis with renal tubular acidosis, carbonic anhydrase II deficiency syndrome, Guibaud-Vainsel syndrome or marble brain disease. Osteopetrosis is a rare genetic disease characterized by abnormally dense bone, due to defective resorption of immature bone. The disorder occurs in two forms: a severe autosomal recessive form occurring in utero, infancy, or childhood, and a benign autosomal dominant form occurring in adolescence or adulthood. Autosomal recessive osteopetrosis is usually associated with normal or elevated amount of non-functional osteoclasts. OPTB3 is associated with renal tubular acidosis, cerebral calcification (marble brain disease) and in some cases with mental retardation.<ref>PMID:1928091</ref><ref>PMID:1542674</ref><ref>PMID:8834238</ref><ref>PMID:9143915</ref><ref>PMID:15300855</ref>
| + | |
| | | |
- | ==Function==
| + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
- | [[http://www.uniprot.org/uniprot/CAH2_HUMAN CAH2_HUMAN]] Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Can hydrate cyanamide to urea. Involved in the regulation of fluid secretion into the anterior chamber of the eye.<ref>PMID:10550681</ref><ref>PMID:11831900</ref>
| + | </div> |
- | | + | |
- | ==About this Structure==
| + | |
- | [[3bl1]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3BL1 OCA].
| + | |
| | | |
| ==See Also== | | ==See Also== |
| *[[Carbonic anhydrase|Carbonic anhydrase]] | | *[[Carbonic anhydrase|Carbonic anhydrase]] |
- | | + | == References == |
- | ==Reference== | + | <references/> |
- | <ref group="xtra">PMID:018374572</ref><references group="xtra"/><references/>
| + | __TOC__ |
| + | </StructureSection> |
| [[Category: Carbonate dehydratase]] | | [[Category: Carbonate dehydratase]] |
| [[Category: Homo sapiens]] | | [[Category: Homo sapiens]] |
| Structural highlights
3bl1 is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Ligands: | , ,
| Related: | 2eu2, 2eu3, 3bl0 |
Activity: | Carbonate dehydratase, with EC number 4.2.1.1 |
Resources: | FirstGlance, OCA, RCSB, PDBsum |
Disease
[CAH2_HUMAN] Defects in CA2 are the cause of osteopetrosis autosomal recessive type 3 (OPTB3) [MIM:259730]; also known as osteopetrosis with renal tubular acidosis, carbonic anhydrase II deficiency syndrome, Guibaud-Vainsel syndrome or marble brain disease. Osteopetrosis is a rare genetic disease characterized by abnormally dense bone, due to defective resorption of immature bone. The disorder occurs in two forms: a severe autosomal recessive form occurring in utero, infancy, or childhood, and a benign autosomal dominant form occurring in adolescence or adulthood. Autosomal recessive osteopetrosis is usually associated with normal or elevated amount of non-functional osteoclasts. OPTB3 is associated with renal tubular acidosis, cerebral calcification (marble brain disease) and in some cases with mental retardation.[1] [2] [3] [4] [5]
Function
[CAH2_HUMAN] Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Can hydrate cyanamide to urea. Involved in the regulation of fluid secretion into the anterior chamber of the eye.[6] [7]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Diuretics such as hydrochlorothiazide, hydroflumethiazide, quinethazone, metolazone, chlorthalidone, indapamide, furosemide, and bumetanide containing primary sulfamoyl moieties were reevaluated as inhibitors of 12 human carbonic anhydrases (hCAs, EC 4.2.1.1). These drugs considerably inhibit (low nanomolar range) some CA isozymes involved in critical physiologic processes, among the 16 present in vertebrates, for example, metolazone against CA VII, XII, and XIII, chlorthalidone against CA VB, VII, IX, XII, and XIII, indapamide against CA VII, IX, XII, and XIII, furosemide against CA I, II, and XIV, and bumetanide against CA IX and XII. The X-ray crystal structure of the hCA II-indapamide adduct was also resolved at high resolution.
Carbonic anhydrase inhibitors. Interaction of indapamide and related diuretics with 12 mammalian isozymes and X-ray crystallographic studies for the indapamide-isozyme II adduct.,Temperini C, Cecchi A, Scozzafava A, Supuran CT Bioorg Med Chem Lett. 2008 Apr 15;18(8):2567-73. Epub 2008 Mar 20. PMID:18374572[8]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Venta PJ, Welty RJ, Johnson TM, Sly WS, Tashian RE. Carbonic anhydrase II deficiency syndrome in a Belgian family is caused by a point mutation at an invariant histidine residue (107 His----Tyr): complete structure of the normal human CA II gene. Am J Hum Genet. 1991 Nov;49(5):1082-90. PMID:1928091
- ↑ Roth DE, Venta PJ, Tashian RE, Sly WS. Molecular basis of human carbonic anhydrase II deficiency. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1804-8. PMID:1542674
- ↑ Soda H, Yukizane S, Yoshida I, Koga Y, Aramaki S, Kato H. A point mutation in exon 3 (His 107-->Tyr) in two unrelated Japanese patients with carbonic anhydrase II deficiency with central nervous system involvement. Hum Genet. 1996 Apr;97(4):435-7. PMID:8834238
- ↑ Hu PY, Lim EJ, Ciccolella J, Strisciuglio P, Sly WS. Seven novel mutations in carbonic anhydrase II deficiency syndrome identified by SSCP and direct sequencing analysis. Hum Mutat. 1997;9(5):383-7. PMID:9143915 doi:<383::AID-HUMU1>3.0.CO;2-5 10.1002/(SICI)1098-1004(1997)9:5<383::AID-HUMU1>3.0.CO;2-5
- ↑ Shah GN, Bonapace G, Hu PY, Strisciuglio P, Sly WS. Carbonic anhydrase II deficiency syndrome (osteopetrosis with renal tubular acidosis and brain calcification): novel mutations in CA2 identified by direct sequencing expand the opportunity for genotype-phenotype correlation. Hum Mutat. 2004 Sep;24(3):272. PMID:15300855 doi:10.1002/humu.9266
- ↑ Briganti F, Mangani S, Scozzafava A, Vernaglione G, Supuran CT. Carbonic anhydrase catalyzes cyanamide hydration to urea: is it mimicking the physiological reaction? J Biol Inorg Chem. 1999 Oct;4(5):528-36. PMID:10550681
- ↑ Kim CY, Whittington DA, Chang JS, Liao J, May JA, Christianson DW. Structural aspects of isozyme selectivity in the binding of inhibitors to carbonic anhydrases II and IV. J Med Chem. 2002 Feb 14;45(4):888-93. PMID:11831900
- ↑ Temperini C, Cecchi A, Scozzafava A, Supuran CT. Carbonic anhydrase inhibitors. Interaction of indapamide and related diuretics with 12 mammalian isozymes and X-ray crystallographic studies for the indapamide-isozyme II adduct. Bioorg Med Chem Lett. 2008 Apr 15;18(8):2567-73. Epub 2008 Mar 20. PMID:18374572 doi:10.1016/j.bmcl.2008.03.051
|