1k92
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | + | ==Crystal Structure of Uncomplexed E. coli Argininosuccinate Synthetase== | |
- | === | + | <StructureSection load='1k92' size='340' side='right' caption='[[1k92]], [[Resolution|resolution]] 1.60Å' scene=''> |
- | + | == Structural highlights == | |
+ | <table><tr><td colspan='2'>[[1k92]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1K92 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1K92 FirstGlance]. <br> | ||
+ | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene><br> | ||
+ | <tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1k97|1k97]]</td></tr> | ||
+ | <tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">ARGG ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 Escherichia coli])</td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Argininosuccinate_synthase Argininosuccinate synthase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=6.3.4.5 6.3.4.5] </span></td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1k92 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1k92 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1k92 RCSB], [http://www.ebi.ac.uk/pdbsum/1k92 PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/k9/1k92_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | BACKGROUND: Argininosuccinate synthetase (AS) is the rate-limiting enzyme of both the urea and arginine-citrulline cycles. In mammals, deficiency of AS leads to citrullinemia, a debilitating and often fatal autosomal recessive urea cycle disorder, whereas its overexpression for sustained nitric oxide production via the arginine-citrulline cycle leads to the potentially fatal hypotension associated with septic and cytokine-induced circulatory shock. RESULTS: The crystal structure of E. coli AS (EAS) has been determined by the use of selenomethionine incorporation and MAD phasing. The structure has been refined at 1.6 A resolution in the absence of its substrates and at 2.0 A in the presence of aspartate and citrulline (EAS*CIT+ASP). Each monomer of this tetrameric protein has two structural domains: a nucleotide binding domain similar to that of the "N-type" ATP pyrophosphatase class of enzymes, and a novel catalytic/multimerization domain. The EAS*CIT+ASP structure clearly describes the binding of citrulline at the cleft between the two domains and of aspartate to a loop of the nucleotide binding domain, whereas homology modeling with the N-type ATP pyrophosphatases has provided the location of ATP binding. CONCLUSIONS: The first three-dimensional structures of AS are reported. The fold of the nucleotide binding domain confirms AS as the fourth structurally defined member of the N-type ATP pyrophosphatases. The structures identify catalytically important residues and suggest the requirement for a conformational change during the catalytic cycle. Sequence similarity between the bacterial and human enzymes has been used for providing insight into the structural and functional effects of observed clinical mutations. | ||
- | + | The 1.6 A crystal structure of E. coli argininosuccinate synthetase suggests a conformational change during catalysis.,Lemke CT, Howell PL Structure. 2001 Dec;9(12):1153-64. PMID:11738042<ref>PMID:11738042</ref> | |
- | + | ||
- | == | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
- | + | </div> | |
+ | == References == | ||
+ | <references/> | ||
+ | __TOC__ | ||
+ | </StructureSection> | ||
[[Category: Argininosuccinate synthase]] | [[Category: Argininosuccinate synthase]] | ||
[[Category: Escherichia coli]] | [[Category: Escherichia coli]] |
Revision as of 09:03, 3 October 2014
Crystal Structure of Uncomplexed E. coli Argininosuccinate Synthetase
|