3bmx
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | + | ==Beta-N-hexosaminidase (YbbD) from Bacillus subtilis== | |
- | + | <StructureSection load='3bmx' size='340' side='right' caption='[[3bmx]], [[Resolution|resolution]] 1.40Å' scene=''> | |
- | + | == Structural highlights == | |
+ | <table><tr><td colspan='2'>[[3bmx]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_globigii"_migula_1900 "bacillus globigii" migula 1900]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3BMX OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3BMX FirstGlance]. <br> | ||
+ | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=P4G:1-ETHOXY-2-(2-ETHOXYETHOXY)ETHANE'>P4G</scene></td></tr> | ||
+ | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">ybbD ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1423 "Bacillus globigii" Migula 1900])</td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3bmx FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3bmx OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3bmx RCSB], [http://www.ebi.ac.uk/pdbsum/3bmx PDBsum]</span></td></tr> | ||
+ | </table> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/bm/3bmx_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Three-dimensional structures of NagZ of Bacillus subtilis, the first structures of a two-domain beta-N-acetylglucosaminidase of family 3 of glycosidases, were determined with and without the transition state mimicking inhibitor PUGNAc bound to the active site, at 1.84- and 1.40-A resolution, respectively. The structures together with kinetic analyses of mutants revealed an Asp-His dyad involved in catalysis: His(234) of BsNagZ acts as general acid/base catalyst and is hydrogen bonded by Asp(232) for proper function. Replacement of both His(234) and Asp(232) with glycine reduced the rate of hydrolysis of the fluorogenic substrate 4'-methylumbelliferyl N-acetyl-beta-D-glucosaminide 1900- and 4500-fold, respectively, and rendered activity pH-independent in the alkaline range consistent with a role of these residues in acid/base catalysis. N-Acetylglucosaminyl enzyme intermediate accumulated in the H234G mutant and beta-azide product was formed in the presence of sodium azide in both mutants. The Asp-His dyad is conserved within beta-N-acetylglucosaminidases but otherwise absent in beta-glycosidases of family 3, which instead carry a "classical" glutamate acid/base catalyst. The acid/base glutamate of Hordeum vulgare exoglucanase (Exo1) superimposes with His(234) of the dyad of BsNagZ and, in contrast to the latter, protrudes from a second domain of the enzyme into the active site. This is the first report of an Asp-His catalytic dyad involved in hydrolysis of glycosides resembling in function the Asp-His-Ser triad of serine proteases. Our findings will facilitate the development of mechanism-based inhibitors that selectively target family 3 beta-N-acetylglucosaminidases, which are involved in bacterial cell wall turnover, spore germination, and induction of beta-lactamase. | ||
- | + | Structural and kinetic analysis of Bacillus subtilis N-acetylglucosaminidase reveals a unique Asp-His dyad mechanism.,Litzinger S, Fischer S, Polzer P, Diederichs K, Welte W, Mayer C J Biol Chem. 2010 Nov 12;285(46):35675-84. Epub 2010 Sep 7. PMID:20826810<ref>PMID:20826810</ref> | |
- | + | ||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
==See Also== | ==See Also== | ||
*[[Beta-Hexosaminidase|Beta-Hexosaminidase]] | *[[Beta-Hexosaminidase|Beta-Hexosaminidase]] | ||
- | + | == References == | |
- | == | + | <references/> |
- | + | __TOC__ | |
+ | </StructureSection> | ||
[[Category: Bacillus globigii migula 1900]] | [[Category: Bacillus globigii migula 1900]] | ||
[[Category: Fischer, S.]] | [[Category: Fischer, S.]] |
Revision as of 06:00, 10 October 2014
Beta-N-hexosaminidase (YbbD) from Bacillus subtilis
|