4hop

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 2: Line 2:
<StructureSection load='4hop' size='340' side='right' caption='[[4hop]], [[Resolution|resolution]] 2.29&Aring;' scene=''>
<StructureSection load='4hop' size='340' side='right' caption='[[4hop]], [[Resolution|resolution]] 2.29&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[4hop]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/Buffalo_rat Buffalo rat] and [http://en.wikipedia.org/wiki/Lk3_transgenic_mice Lk3 transgenic mice]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4HOP OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4HOP FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[4hop]] is a 6 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4HOP OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4HOP FirstGlance]. <br>
</td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1qav|1qav]]</td></tr>
</td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1qav|1qav]]</td></tr>
-
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">Snt1, Snta1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10090 LK3 transgenic mice]), Bnos, Nos1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10116 Buffalo rat])</td></tr>
 
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Nitric-oxide_synthase_(NADPH_dependent) Nitric-oxide synthase (NADPH dependent)], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.14.13.39 1.14.13.39] </span></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Nitric-oxide_synthase_(NADPH_dependent) Nitric-oxide synthase (NADPH dependent)], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.14.13.39 1.14.13.39] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4hop FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4hop OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4hop RCSB], [http://www.ebi.ac.uk/pdbsum/4hop PDBsum]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4hop FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4hop OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4hop RCSB], [http://www.ebi.ac.uk/pdbsum/4hop PDBsum]</span></td></tr>
</table>
</table>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Reengineering protein-protein recognition is an important route to dissecting and controlling complex interaction networks. Experimental approaches have used the strategy of "second-site suppressors," where a functional interaction is inferred between two proteins if a mutation in one protein can be compensated by a mutation in the second. Mimicking this strategy, computational design has been applied successfully to change protein recognition specificity by predicting such sets of compensatory mutations in protein-protein interfaces. To extend this approach, it would be advantageous to be able to "transplant" existing engineered and experimentally validated specificity changes to other homologous protein-protein complexes. Here, we test this strategy by designing a pair of mutations that modulates peptide recognition specificity in the Syntrophin PDZ domain, confirming the designed interaction biochemically and structurally, and then transplanting the mutations into the context of five related PDZ domain-peptide complexes. We find a wide range of energetic effects of identical mutations in structurally similar positions, revealing a dramatic context dependence (epistasis) of designed mutations in homologous protein-protein interactions. To better understand the structural basis of this context dependence, we apply a structure-based computational model that recapitulates these energetic effects and we use this model to make and validate forward predictions. Although the context dependence of these mutations is captured by computational predictions, our results both highlight the considerable difficulties in designing protein-protein interactions and provide challenging benchmark cases for the development of improved protein modeling and design methods that accurately account for the context.
 +
 +
Quantification of the transferability of a designed protein specificity switch reveals extensive epistasis in molecular recognition.,Melero C, Ollikainen N, Harwood I, Karpiak J, Kortemme T Proc Natl Acad Sci U S A. 2014 Oct 13. pii: 201410624. PMID:25313039<ref>PMID:25313039</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
-
[[Category: Buffalo rat]]
 
-
[[Category: Lk3 transgenic mice]]
 
[[Category: Harwood, I M.]]
[[Category: Harwood, I M.]]
[[Category: Kortemme, T.]]
[[Category: Kortemme, T.]]

Revision as of 09:32, 29 October 2014

Crystal structure of the computationally designed NNOS-Syntrophin complex

4hop, resolution 2.29Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools