Mycobacterium tuberculosis ArfA Rv0899

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
-
<Structure load=2l26' size='350' frame='true' align='right' caption='Insert caption here' scene='Insert optional scene name here' />==Your Heading Here (maybe something )==
+
<Structure load= size='350' frame='true' align='right' caption='Insert caption here' scene='Insert optional scene name here' />==Your Heading Here (maybe something )==
== Function ==
== Function ==

Revision as of 12:41, 6 December 2014

Insert caption here

Drag the structure with the mouse to rotate
==Your Heading Here (maybe something )==

Contents

Function

The membrane protein Rv0899 (OmpATb) from Mycobacterium tuberculosis, has been proposed to act as an outer membrane porin and to contribute to the bacterium's adaptation to the acidic environment of the phagosome during infection. The gene is restricted to pathogenic mycobacteria and, thus, is an attractive candidate for the development of anti-tuberculosis chemotherapy. The 326-residue protein contains three domains: an N-terminal domain (residues 1-72) that includes a sequence of 20 hydrophobic amino acids required for membrane translocation, a central B domain (residues 73-200) with homology to the conserved putative lipid-binding BON (bacterial OsmY and nodulation) superfamily, and a C domain (residues 201-326) with homology to the OmpA-C-like superfamily of periplasmic peptidoglycan-binding sequences, found in several types of bacterial membrane proteins, including in the C-terminus of the Escherichia coli outer membrane protein OmpA. We have characterized the structure and dynamics of the B and C domains and have determined the three-dimensional structure of the B domain. Rv0899 does not form a transmembrane beta-barrel. Residues 73-326 form a mixed alpha/beta-globular structure, encompassing two independently folded modules corresponding to the B and C domains connected by a flexible linker. The B domain folds with three parallel/antiparallel alpha-helices packed against six parallel/antiparallel beta-strands that form a flat beta-sheet. The core is hydrophobic, while the exterior is polar and predominantly acidic. The structure of a BON homology domain is revealed here for the first time. In light of this unexpected structure, it is hard to reconcile an outer membrane porin activity with the central domain of the protein. The structure of the B domain and the overall architecture of the protein suggest alternative modes of membrane association.[1] Rv0899 from Mycobacterium tuberculosis belongs to the OmpA (outer membrane protein A) family of outer membrane proteins. It functions as a pore-forming protein; the deletion of this gene impairs the uptake of some water-soluble substances, such as serine, glucose, and glycerol. Rv0899 has also been shown to play a part in low-pH environment adaption, which may play a part in pathogenic mycobacteria overcoming the host's defense mechanisms. Based on many bacterial physiological data and recent structural studies, it was proposed that Rv0899 forms an oligomeric channel to carry out such functions. In this work, biochemical and structural data obtained from solution NMR and EPR spectroscopy indicated that Rv0899 is a monomeric membrane-anchoring protein with two separate domains, rather than an oligomeric pore. Using NMR chemical shift perturbation and isothermal calorimetric titration assays, we show that Rv0899 was able to interact with Zn(2+) ions, which may indicate a role for Rv0899 in the process of Zn(2+) acquisition. [2]

Disease

Relevance

Structural highlights

</StructureSection>

References

  1. Teriete P, Yao Y, Kolodzik A, Yu J, Song H, Niederweis M, Marassi FM. Mycobacterium tuberculosis Rv0899 Adopts a Mixed alpha/beta-Structure and Does Not Form a Transmembrane beta-Barrel. Biochemistry. 2010 Mar 10. PMID:20199110 doi:10.1021/bi100158s
  2. Li J, Shi C, Gao Y, Wu K, Shi P, Lai C, Chen L, Wu F, Tian C. Structural Studies of Mycobacterium tuberculosis Rv0899 Reveal a Monomeric Membrane-Anchoring Protein with Two Separate Domains. J Mol Biol. 2011 Nov 15. PMID:22108166 doi:10.1016/j.jmb.2011.11.016

Proteopedia Page Contributors and Editors (what is this?)

Liliya Karasik, Jaime Prilusky, Michal Harel

Personal tools