3ljj
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | [[ | + | ==Bovine trypsin in complex with UB-THR 10== |
+ | <StructureSection load='3ljj' size='340' side='right' caption='[[3ljj]], [[Resolution|resolution]] 1.55Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[3ljj]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Bos_taurus Bos taurus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3LJJ OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3LJJ FirstGlance]. <br> | ||
+ | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=10U:(S)-N-(4-CARBAMIMIDOYLBENZYL)-1-(2-(CYCLOPENTYLAMINO)ETHANOYL)PYRROLIDINE-2-CARBOXAMIDE'>10U</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | ||
+ | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2zft|2zft]], [[2zfs|2zfs]], [[2zq1|2zq1]], [[2zq2|2zq2]], [[2zhd|2zhd]], [[3biu|3biu]], [[3ljo|3ljo]]</td></tr> | ||
+ | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Trypsin Trypsin], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.4.21.4 3.4.21.4] </span></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3ljj FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ljj OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3ljj RCSB], [http://www.ebi.ac.uk/pdbsum/3ljj PDBsum]</span></td></tr> | ||
+ | </table> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/lj/3ljj_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | A congeneric series of benzamidine-type ligands with a central proline moiety and a terminal cycloalkyl group-linked by a secondary amine, ether, or methylene bridge-was synthesized as trypsin inhibitors. This series of inhibitors was investigated by isothermal titration calorimetry, crystal structure analysis in two crystal forms, and molecular dynamics simulations. Even though all of these congeneric ligands exhibited essentially the same affinity for trypsin, their binding profiles at the structural, dynamic, and thermodynamic levels are very distinct. The ligands display a pronounced enthalpy/entropy compensation that results in a nearly unchanged free energy of binding, even though individual enthalpy and entropy terms change significantly across the series. Crystal structures revealed that the secondary amine-linked analogs scatter over two distinct conformational families of binding modes that occupy either the inside or the outside the protein's S3/S4 specificity pocket. In contrast, the ether-linked and methylene-linked ligands preferentially occupy the hydrophobic specificity pocket. This also explains why the latter ligands could only be crystallized in the conformationally restricting closed crystal form whereas the derivative with the highest residual mobility in the series escaped our attempts to crystallize it in the closed form; instead, a well-resolved structure could only be achieved in the open form with the ligand in disordered orientation. These distinct binding modes are supported by molecular dynamics simulations and correlate with the shifting enthalpic/entropic signatures of ligand binding. The examples demonstrate that, at the molecular level, binding modes and thermodynamic binding signatures can be very different even for closely related ligands. However, deviating binding profiles provide the opportunity to optimally address a given target. | ||
- | + | Congeneric but Still Distinct: How Closely Related Trypsin Ligands Exhibit Different Thermodynamic and Structural Properties.,Brandt T, Holzmann N, Muley L, Khayat M, Wegscheid-Gerlach C, Baum B, Heine A, Hangauer D, Klebe G J Mol Biol. 2010 Nov 25. PMID:21111747<ref>PMID:21111747</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
==See Also== | ==See Also== | ||
*[[Trypsin|Trypsin]] | *[[Trypsin|Trypsin]] | ||
- | + | == References == | |
- | == | + | <references/> |
- | < | + | __TOC__ |
+ | </StructureSection> | ||
[[Category: Bos taurus]] | [[Category: Bos taurus]] | ||
[[Category: Trypsin]] | [[Category: Trypsin]] | ||
- | [[Category: Heine, A | + | [[Category: Heine, A]] |
- | [[Category: Klebe, G | + | [[Category: Klebe, G]] |
- | [[Category: Wegscheid-Gerlach, C | + | [[Category: Wegscheid-Gerlach, C]] |
[[Category: Hydrolase-hydrolase inhibitor complex]] | [[Category: Hydrolase-hydrolase inhibitor complex]] | ||
[[Category: Metal-binding]] | [[Category: Metal-binding]] | ||
[[Category: Serine protease]] | [[Category: Serine protease]] |
Revision as of 08:29, 9 December 2014
Bovine trypsin in complex with UB-THR 10
|