4aya
From Proteopedia
(Difference between revisions)
| Line 1: | Line 1: | ||
| - | [[ | + | ==Crystal structure of ID2 HLH homodimer at 2.1A resolution== |
| + | <StructureSection load='4aya' size='340' side='right' caption='[[4aya]], [[Resolution|resolution]] 2.10Å' scene=''> | ||
| + | == Structural highlights == | ||
| + | <table><tr><td colspan='2'>[[4aya]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4AYA OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4AYA FirstGlance]. <br> | ||
| + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene></td></tr> | ||
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4aya FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4aya OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4aya RCSB], [http://www.ebi.ac.uk/pdbsum/4aya PDBsum]</span></td></tr> | ||
| + | </table> | ||
| + | <div style="background-color:#fffaf0;"> | ||
| + | == Publication Abstract from PubMed == | ||
| + | Inhibitors of DNA binding and differentiation (ID) proteins, a dominant-negative group of helix-loop-helix (HLH) transcription regulators, are well-characterized key players in cellular fate determination during development in mammals as well as Drosophila. Although not oncogenes themselves, their upregulation by various oncogenic proteins (such as Ras, Myc) and their inhibitory effects on cell cycle proteins (such as pRb) hint at their possible roles in tumorigenesis. Furthermore, their potency as inhibitors of cellular differentiation, through their heterodimerization with subsequent inactivation of the ubiquitous E proteins, suggest possible novel roles in engineering induced pluripotent stem cells (iPSCs). We present the high-resolution 2.1A crystal structure of ID2 (HLH domain), coupled with novel biochemical insights in the presence of a divalent ion, possibly calcium (Ca2+), in the loop of ID proteins, which appear to be crucial for the structure and activity of ID proteins. These new insights will pave the way for new rational drug designs, in addition to current synthetic peptide options, against this potent player in tumorigenesis as well as more efficient ways for stem cells reprogramming. | ||
| - | + | A Divalent Ion Is Crucial in the Structure and Dominant-Negative Function of ID Proteins, a Class of Helix-Loop-Helix Transcription Regulators.,Wong MV, Jiang S, Palasingam P, Kolatkar PR PLoS One. 2012;7(10):e48591. doi: 10.1371/journal.pone.0048591. Epub 2012 Oct 30. PMID:23119064<ref>PMID:23119064</ref> | |
| - | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
| - | + | </div> | |
| - | + | == References == | |
| - | == | + | <references/> |
| - | + | __TOC__ | |
| + | </StructureSection> | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
| - | [[Category: Jiang, S | + | [[Category: Jiang, S]] |
| - | [[Category: Kolatkar, P R | + | [[Category: Kolatkar, P R]] |
| - | [[Category: Palasingam, P | + | [[Category: Palasingam, P]] |
| - | [[Category: Wong, M V | + | [[Category: Wong, M V]] |
[[Category: Cell cycle]] | [[Category: Cell cycle]] | ||
Revision as of 16:24, 9 December 2014
Crystal structure of ID2 HLH homodimer at 2.1A resolution
| |||||||||||
