1xda
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | + | ==STRUCTURE OF INSULIN== | |
- | === | + | <StructureSection load='1xda' size='340' side='right' caption='[[1xda]], [[Resolution|resolution]] 1.80Å' scene=''> |
- | + | == Structural highlights == | |
+ | <table><tr><td colspan='2'>[[1xda]] is a 8 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1XDA OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1XDA FirstGlance]. <br> | ||
+ | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=IPH:PHENOL'>IPH</scene>, <scene name='pdbligand=MYR:MYRISTIC+ACID'>MYR</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1xda FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1xda OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1xda RCSB], [http://www.ebi.ac.uk/pdbsum/1xda PDBsum]</span></td></tr> | ||
+ | </table> | ||
+ | == Disease == | ||
+ | [[http://www.uniprot.org/uniprot/INS_HUMAN INS_HUMAN]] Defects in INS are the cause of familial hyperproinsulinemia (FHPRI) [MIM:[http://omim.org/entry/176730 176730]].<ref>PMID:3470784</ref> <ref>PMID:2196279</ref> <ref>PMID:4019786</ref> <ref>PMID:1601997</ref> Defects in INS are a cause of diabetes mellitus insulin-dependent type 2 (IDDM2) [MIM:[http://omim.org/entry/125852 125852]]. IDDM2 is a multifactorial disorder of glucose homeostasis that is characterized by susceptibility to ketoacidosis in the absence of insulin therapy. Clinical fetaures are polydipsia, polyphagia and polyuria which result from hyperglycemia-induced osmotic diuresis and secondary thirst. These derangements result in long-term complications that affect the eyes, kidneys, nerves, and blood vessels.<ref>PMID:18192540</ref> Defects in INS are a cause of diabetes mellitus permanent neonatal (PNDM) [MIM:[http://omim.org/entry/606176 606176]]. PNDM is a rare form of diabetes distinct from childhood-onset autoimmune diabetes mellitus type 1. It is characterized by insulin-requiring hyperglycemia that is diagnosed within the first months of life. Permanent neonatal diabetes requires lifelong therapy.<ref>PMID:17855560</ref> <ref>PMID:18162506</ref> Defects in INS are a cause of maturity-onset diabetes of the young type 10 (MODY10) [MIM:[http://omim.org/entry/613370 613370]]. MODY10 is a form of diabetes that is characterized by an autosomal dominant mode of inheritance, onset in childhood or early adulthood (usually before 25 years of age), a primary defect in insulin secretion and frequent insulin-independence at the beginning of the disease.<ref>PMID:18192540</ref> <ref>PMID:18162506</ref> <ref>PMID:20226046</ref> | ||
+ | == Function == | ||
+ | [[http://www.uniprot.org/uniprot/INS_HUMAN INS_HUMAN]] Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver. | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The fatty acid acylated insulin, Lys(B29)-tetradecanoyl, des-(B30) human insulin, has been crystallized and the structure determined by X-ray crystallography. The fatty acid substituent on residue B29 Lys binds reversibly to circulating albumin protein in vivo, and by this mechanism the hormone's action is prolonged. Crystals of the fatty acid insulin grow in space group R3, with two dimers in the asymmetric unit, and diffract to 1.8 A spacing. The structure has been solved by molecular replacement and refined using a maximum likelihood method. The crystal structure consists of R6 zinc insulin hexamers which contain phenol. The fatty acids can be seen bound between the hexamers, making specific interactions with the side chains of residue B1 Phe; however, the lysine side chains to which the fatty acids are covalently attached are mostly disordered. The mode of binding of the fatty acids appears to be determined by crystal packing, and whether or not they interact with the protein in this way in solution remains uncertain. | ||
- | + | Crystal structure of a prolonged-acting insulin with albumin-binding properties.,Whittingham JL, Havelund S, Jonassen I Biochemistry. 1997 Mar 11;36(10):2826-31. PMID:9062110<ref>PMID:9062110</ref> | |
- | + | ||
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | ||
- | + | ||
- | + | ||
==See Also== | ==See Also== | ||
*[[Molecular Playground/Insulin|Molecular Playground/Insulin]] | *[[Molecular Playground/Insulin|Molecular Playground/Insulin]] | ||
- | + | == References == | |
- | == | + | <references/> |
- | + | __TOC__ | |
+ | </StructureSection> | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
- | [[Category: Havelund, S | + | [[Category: Havelund, S]] |
- | [[Category: Jonassen, I | + | [[Category: Jonassen, I]] |
- | [[Category: Whittingham, J L | + | [[Category: Whittingham, J L]] |
[[Category: Chemical activity]] | [[Category: Chemical activity]] | ||
[[Category: Diabetes]] | [[Category: Diabetes]] |
Revision as of 11:13, 18 December 2014
STRUCTURE OF INSULIN
|