3j0j

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
-
{{STRUCTURE_3j0j| PDB=3j0j | SCENE= }}
+
==Fitted atomic models of Thermus thermophilus V-ATPase subunits into cryo-EM map==
-
===Fitted atomic models of Thermus thermophilus V-ATPase subunits into cryo-EM map===
+
<StructureSection load='3j0j' size='340' side='right' caption='[[3j0j]], [[Resolution|resolution]] 9.70&Aring;' scene=''>
-
{{ABSTRACT_PUBMED_22178924}}
+
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[3j0j]] is a 13 chain structure with sequence from [http://en.wikipedia.org/wiki/Thermus_thermophilus Thermus thermophilus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3J0J OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3J0J FirstGlance]. <br>
 +
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene></td></tr>
 +
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/H(+)-transporting_two-sector_ATPase H(+)-transporting two-sector ATPase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.6.3.14 3.6.3.14] </span></td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3j0j FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3j0j OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3j0j RCSB], [http://www.ebi.ac.uk/pdbsum/3j0j PDBsum]</span></td></tr>
 +
</table>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Ion-translocating rotary ATPases serve either as ATP synthases, using energy from a transmembrane ion motive force to create the cell's supply of ATP, or as transmembrane ion pumps that are powered by ATP hydrolysis. The members of this family of enzymes each contain two rotary motors: one that couples ion translocation to rotation and one that couples rotation to ATP synthesis or hydrolysis. During ATP synthesis, ion translocation through the membrane-bound region of the complex causes rotation of a central rotor that drives conformational changes and ATP synthesis in the catalytic region of the complex. There are no structural models available for the intact membrane region of any ion-translocating rotary ATPase. Here we present a 9.7 A resolution map of the H(+)-driven ATP synthase from Thermus thermophilus obtained by electron cryomicroscopy of single particles in ice. The 600-kilodalton complex has an overall subunit composition of A(3)B(3)CDE(2)FG(2)IL(12). The membrane-bound motor consists of a ring of L subunits and the carboxy-terminal region of subunit I, which are equivalent to the c and a subunits of most other rotary ATPases, respectively. The map shows that the ring contains 12 L subunits and that the I subunit has eight transmembrane helices. The L(12) ring and I subunit have a surprisingly small contact area in the middle of the membrane, with helices from the I subunit making contacts with two different L subunits. The transmembrane helices of subunit I form bundles that could serve as half-channels across the membrane, with the first half-channel conducting protons from the periplasm to the L(12) ring and the second half-channel conducting protons from the L(12) ring to the cytoplasm. This structure therefore suggests the mechanism by which a transmembrane proton motive force is converted to rotation in rotary ATPases.
-
==Function==
+
Subnanometre-resolution structure of the intact Thermus thermophilus H(+)-driven ATP synthase.,Lau WC, Rubinstein JL Nature. 2011 Dec 18. doi: 10.1038/nature10699. PMID:22178924<ref>PMID:22178924</ref>
-
[[http://www.uniprot.org/uniprot/VATE_THET8 VATE_THET8]] Produces ATP from ADP in the presence of a proton gradient across the membrane. [[http://www.uniprot.org/uniprot/VATF_THET8 VATF_THET8]] Produces ATP from ADP in the presence of a proton gradient across the membrane. [[http://www.uniprot.org/uniprot/VATA_THET8 VATA_THET8]] Produces ATP from ADP in the presence of a proton gradient across the membrane. The V-type alpha chain is a catalytic subunit. [[http://www.uniprot.org/uniprot/VATD_THET8 VATD_THET8]] Produces ATP from ADP in the presence of a proton gradient across the membrane. [[http://www.uniprot.org/uniprot/VATC_THET8 VATC_THET8]] Produces ATP from ADP in the presence of a proton gradient across the membrane. [[http://www.uniprot.org/uniprot/VATB_THET8 VATB_THET8]] Produces ATP from ADP in the presence of a proton gradient across the membrane. The V-type beta chain is a regulatory subunit.
+
-
==About this Structure==
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
[[3j0j]] is a 13 chain structure with sequence from [http://en.wikipedia.org/wiki/Thermus_thermophilus Thermus thermophilus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3J0J OCA].
+
</div>
==See Also==
==See Also==
-
*[[ATP synthase|ATP synthase]]
+
*[[ATPase|ATPase]]
*[[V-ATPase|V-ATPase]]
*[[V-ATPase|V-ATPase]]
-
 
+
== References ==
-
==Reference==
+
<references/>
-
<ref group="xtra">PMID:022178924</ref><references group="xtra"/><references/>
+
__TOC__
 +
</StructureSection>
[[Category: Thermus thermophilus]]
[[Category: Thermus thermophilus]]
-
[[Category: Lau, W C.Y.]]
+
[[Category: Lau, W C.Y]]
-
[[Category: Rubinstein, J L.]]
+
[[Category: Rubinstein, J L]]
[[Category: Flexible fitting]]
[[Category: Flexible fitting]]
[[Category: Hydrolase]]
[[Category: Hydrolase]]
[[Category: Membrane protein complex]]
[[Category: Membrane protein complex]]
[[Category: Rigid body fitting]]
[[Category: Rigid body fitting]]

Revision as of 15:17, 18 December 2014

Fitted atomic models of Thermus thermophilus V-ATPase subunits into cryo-EM map

3j0j, resolution 9.70Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools