3i08
From Proteopedia
(Difference between revisions)
| Line 1: | Line 1: | ||
| - | + | ==Crystal structure of the S1-cleaved Notch1 Negative Regulatory Region (NRR)== | |
| - | + | <StructureSection load='3i08' size='340' side='right' caption='[[3i08]], [[Resolution|resolution]] 3.20Å' scene=''> | |
| - | + | == Structural highlights == | |
| - | + | <table><tr><td colspan='2'>[[3i08]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3I08 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3I08 FirstGlance]. <br> | |
| - | ==Disease== | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene></td></tr> |
| - | [[http://www.uniprot.org/uniprot/NOTC1_HUMAN NOTC1_HUMAN]] Defects in NOTCH1 are a cause of aortic valve disease 1 (AOVD1) [MIM:[http://omim.org/entry/109730 109730]]. A common defect in the aortic valve in which two rather than three leaflets are present. It is often associated with aortic valve calcification and insufficiency. In extreme cases, the blood flow may be so restricted that the left ventricle fails to grow, resulting in hypoplastic left heart syndrome.<ref>PMID:16025100</ref> | + | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3eto|3eto]], [[2oo4|2oo4]]</td></tr> |
| - | + | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">human Notch1, NOTCH1, TAN1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens])</td></tr> | |
| - | ==Function== | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3i08 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3i08 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3i08 RCSB], [http://www.ebi.ac.uk/pdbsum/3i08 PDBsum]</span></td></tr> |
| + | </table> | ||
| + | == Disease == | ||
| + | [[http://www.uniprot.org/uniprot/NOTC1_HUMAN NOTC1_HUMAN]] Defects in NOTCH1 are a cause of aortic valve disease 1 (AOVD1) [MIM:[http://omim.org/entry/109730 109730]]. A common defect in the aortic valve in which two rather than three leaflets are present. It is often associated with aortic valve calcification and insufficiency. In extreme cases, the blood flow may be so restricted that the left ventricle fails to grow, resulting in hypoplastic left heart syndrome.<ref>PMID:16025100</ref> | ||
| + | == Function == | ||
[[http://www.uniprot.org/uniprot/NOTC1_HUMAN NOTC1_HUMAN]] Functions as a receptor for membrane-bound ligands Jagged1, Jagged2 and Delta1 to regulate cell-fate determination. Upon ligand activation through the released notch intracellular domain (NICD) it forms a transcriptional activator complex with RBPJ/RBPSUH and activates genes of the enhancer of split locus. Affects the implementation of differentiation, proliferation and apoptotic programs. May be important for normal lymphocyte function. In altered form, may contribute to transformation or progression in some T-cell neoplasms. Involved in the maturation of both CD4+ and CD8+ cells in the thymus. May be important for follicular differentiation and possibly cell fate selection within the follicle. During cerebellar development, may function as a receptor for neuronal DNER and may be involved in the differentiation of Bergmann glia. Represses neuronal and myogenic differentiation. May enhance HIF1A function by sequestering HIF1AN away from HIF1A (By similarity). | [[http://www.uniprot.org/uniprot/NOTC1_HUMAN NOTC1_HUMAN]] Functions as a receptor for membrane-bound ligands Jagged1, Jagged2 and Delta1 to regulate cell-fate determination. Upon ligand activation through the released notch intracellular domain (NICD) it forms a transcriptional activator complex with RBPJ/RBPSUH and activates genes of the enhancer of split locus. Affects the implementation of differentiation, proliferation and apoptotic programs. May be important for normal lymphocyte function. In altered form, may contribute to transformation or progression in some T-cell neoplasms. Involved in the maturation of both CD4+ and CD8+ cells in the thymus. May be important for follicular differentiation and possibly cell fate selection within the follicle. During cerebellar development, may function as a receptor for neuronal DNER and may be involved in the differentiation of Bergmann glia. Represses neuronal and myogenic differentiation. May enhance HIF1A function by sequestering HIF1AN away from HIF1A (By similarity). | ||
| + | == Evolutionary Conservation == | ||
| + | [[Image:Consurf_key_small.gif|200px|right]] | ||
| + | Check<jmol> | ||
| + | <jmolCheckbox> | ||
| + | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/i0/3i08_consurf.spt"</scriptWhenChecked> | ||
| + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
| + | <text>to colour the structure by Evolutionary Conservation</text> | ||
| + | </jmolCheckbox> | ||
| + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
| + | <div style="clear:both"></div> | ||
| + | <div style="background-color:#fffaf0;"> | ||
| + | == Publication Abstract from PubMed == | ||
| + | BACKGROUND: Notch receptors are normally cleaved during maturation by a furin-like protease at an extracellular site termed S1, creating a heterodimer of non-covalently associated subunits. The S1 site lies within a key negative regulatory region (NRR) of the receptor, which contains three highly conserved Lin12/Notch repeats and a heterodimerization domain (HD) that interact to prevent premature signaling in the absence of ligands. Because the role of S1 cleavage in Notch signaling remains unresolved, we investigated the effect of S1 cleavage on the structure, surface trafficking and ligand-mediated activation of human Notch1 and Notch2, as well as on ligand-independent activation of Notch1 by mutations found in human leukemia. PRINCIPAL FINDINGS: The X-ray structure of the Notch1 NRR after furin cleavage shows little change when compared with that of an engineered Notch1 NRR lacking the S1-cleavage loop. Likewise, NMR studies of the Notch2 HD domain show that the loop containing the S1 site can be removed or cleaved without causing a substantial change in its structure. However, Notch1 and Notch2 receptors engineered to resist S1 cleavage exhibit unexpected differences in surface delivery and signaling competence: S1-resistant Notch1 receptors exhibit decreased, but detectable, surface expression and ligand-mediated receptor activation, whereas S1-resistant Notch2 receptors are fully competent for cell surface delivery and for activation by ligands. Variable dependence on S1 cleavage also extends to T-ALL-associated NRR mutations, as common class 1 mutations display variable decrements in ligand-independent activation when introduced into furin-resistant receptors, whereas a class 2 mutation exhibits increased signaling activity. CONCLUSIONS/SIGNIFICANCE: S1 cleavage has distinct effects on the surface expression of Notch1 and Notch2, but is not generally required for physiologic or pathophysiologic activation of Notch proteins. These findings are consistent with models for receptor activation in which ligand-binding or T-ALL-associated mutations lead to conformational changes of the NRR that permit metalloprotease cleavage. | ||
| - | + | Effects of S1 cleavage on the structure, surface export, and signaling activity of human Notch1 and Notch2.,Gordon WR, Vardar-Ulu D, L'Heureux S, Ashworth T, Malecki MJ, Sanchez-Irizarry C, McArthur DG, Histen G, Mitchell JL, Aster JC, Blacklow SC PLoS One. 2009 Aug 24;4(8):e6613. PMID:19701457<ref>PMID:19701457</ref> | |
| - | + | ||
| - | == | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
| - | + | </div> | |
| + | == References == | ||
| + | <references/> | ||
| + | __TOC__ | ||
| + | </StructureSection> | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
| - | [[Category: Blacklow, S C | + | [[Category: Blacklow, S C]] |
| - | [[Category: Gordon, W R | + | [[Category: Gordon, W R]] |
[[Category: Activator]] | [[Category: Activator]] | ||
[[Category: Ank repeat]] | [[Category: Ank repeat]] | ||
Revision as of 18:02, 18 December 2014
Crystal structure of the S1-cleaved Notch1 Negative Regulatory Region (NRR)
| |||||||||||
Categories: Homo sapiens | Blacklow, S C | Gordon, W R | Activator | Ank repeat | Cell membrane | Developmental protein | Differentiation | Disulfide bond | Egf-like domain | Furin | Gamma-secretase | Glycoprotein | Hd | Heterodimerization domain | Leukemia | Lin-12 notch repeat | Lnr | Membrane | Metal-binding | Metalloprotease | Notch signaling pathway | Nucleus | Oncogene | Phosphoprotein | Receptor | Sea domain | Signaling protein | T-all | Transcription | Transcription regulation | Transmembrane

