3nms

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
m (Protected "3nms" [edit=sysop:move=sysop])
Line 1: Line 1:
-
{{STRUCTURE_3nms| PDB=3nms | SCENE= }}
+
==Staphylococcal Complement Inhibitor (SCIN) in complex with Human Complement C3c==
-
===Staphylococcal Complement Inhibitor (SCIN) in complex with Human Complement C3c===
+
<StructureSection load='3nms' size='340' side='right' caption='[[3nms]], [[Resolution|resolution]] 4.10&Aring;' scene=''>
-
{{ABSTRACT_PUBMED_20654625}}
+
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[3nms]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [http://en.wikipedia.org/wiki/Staphylococcus_aureus Staphylococcus aureus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3NMS OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3NMS FirstGlance]. <br>
 +
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr>
 +
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3l3o|3l3o]]</td></tr>
 +
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">SAV1942, scn ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1280 Staphylococcus aureus])</td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3nms FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3nms OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3nms RCSB], [http://www.ebi.ac.uk/pdbsum/3nms PDBsum]</span></td></tr>
 +
</table>
 +
== Disease ==
 +
[[http://www.uniprot.org/uniprot/CO3_HUMAN CO3_HUMAN]] Defects in C3 are the cause of complement component 3 deficiency (C3D) [MIM:[http://omim.org/entry/613779 613779]]. A rare defect of the complement classical pathway. Patients develop recurrent, severe, pyogenic infections because of ineffective opsonization of pathogens. Some patients may also develop autoimmune disorders, such as arthralgia and vasculitic rashes, lupus-like syndrome and membranoproliferative glomerulonephritis.<ref>PMID:19913840</ref> <ref>PMID:9596584</ref> <ref>PMID:11387479</ref> <ref>PMID:15713468</ref> <ref>PMID:7961791</ref> [:] Genetic variation in C3 is associated with susceptibility to age-related macular degeneration type 9 (ARMD9) [MIM:[http://omim.org/entry/611378 611378]]. ARMD is a multifactorial eye disease and the most common cause of irreversible vision loss in the developed world. In most patients, the disease is manifest as ophthalmoscopically visible yellowish accumulations of protein and lipid that lie beneath the retinal pigment epithelium and within an elastin-containing structure known as Bruch membrane.<ref>PMID:19913840</ref> <ref>PMID:17634448</ref> Defects in C3 are a cause of susceptibility to hemolytic uremic syndrome atypical type 5 (AHUS5) [MIM:[http://omim.org/entry/612925 612925]]. An atypical form of hemolytic uremic syndrome. It is a complex genetic disease characterized by microangiopathic hemolytic anemia, thrombocytopenia, renal failure and absence of episodes of enterocolitis and diarrhea. In contrast to typical hemolytic uremic syndrome, atypical forms have a poorer prognosis, with higher death rates and frequent progression to end-stage renal disease. Note=Susceptibility to the development of atypical hemolytic uremic syndrome can be conferred by mutations in various components of or regulatory factors in the complement cascade system. Other genes may play a role in modifying the phenotype.<ref>PMID:19913840</ref> <ref>PMID:18796626</ref> <ref>PMID:20513133</ref> Note=Increased levels of C3 and its cleavage product ASP, are associated with obesity, diabetes and coronary heart disease. Short-term endurance training reduces baseline ASP levels and subsequently fat storage.<ref>PMID:19913840</ref>
 +
== Function ==
 +
[[http://www.uniprot.org/uniprot/CO3_HUMAN CO3_HUMAN]] C3 plays a central role in the activation of the complement system. Its processing by C3 convertase is the central reaction in both classical and alternative complement pathways. After activation C3b can bind covalently, via its reactive thioester, to cell surface carbohydrates or immune aggregates.<ref>PMID:8376604</ref> <ref>PMID:2909530</ref> <ref>PMID:9059512</ref> <ref>PMID:9555951</ref> <ref>PMID:10432298</ref> <ref>PMID:15833747</ref> <ref>PMID:16333141</ref> <ref>PMID:19615750</ref> Derived from proteolytic degradation of complement C3, C3a anaphylatoxin is a mediator of local inflammatory process. It induces the contraction of smooth muscle, increases vascular permeability and causes histamine release from mast cells and basophilic leukocytes.<ref>PMID:8376604</ref> <ref>PMID:2909530</ref> <ref>PMID:9059512</ref> <ref>PMID:9555951</ref> <ref>PMID:10432298</ref> <ref>PMID:15833747</ref> <ref>PMID:16333141</ref> <ref>PMID:19615750</ref> Acylation stimulating protein (ASP): adipogenic hormone that stimulates triglyceride (TG) synthesis and glucose transport in adipocytes, regulating fat storage and playing a role in postprandial TG clearance. Appears to stimulate TG synthesis via activation of the PLC, MAPK and AKT signaling pathways. Ligand for GPR77. Promotes the phosphorylation, ARRB2-mediated internalization and recycling of GPR77.<ref>PMID:8376604</ref> <ref>PMID:2909530</ref> <ref>PMID:9059512</ref> <ref>PMID:9555951</ref> <ref>PMID:10432298</ref> <ref>PMID:15833747</ref> <ref>PMID:16333141</ref> <ref>PMID:19615750</ref> [[http://www.uniprot.org/uniprot/SCIN_STAAM SCIN_STAAM]] Involved in countering the first line of host defense mechanisms. Efficiently inhibits opsonization, phagocytosis and killing of S.aureus by human neutrophils. Acts by binding and stabilizing human C3 convertases (C4b2a and C3bBb), leading to their inactivation. The convertases are no longer able to cleave complement C3, therefore preventing further C3b deposition on the bacterial surface and phagocytosis of the bacterium. Also prevents C5a-induced neutrophil responses (By similarity).
 +
== Evolutionary Conservation ==
 +
[[Image:Consurf_key_small.gif|200px|right]]
 +
Check<jmol>
 +
<jmolCheckbox>
 +
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/nm/3nms_consurf.spt"</scriptWhenChecked>
 +
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
 +
<text>to colour the structure by Evolutionary Conservation</text>
 +
</jmolCheckbox>
 +
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
 +
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
The human complement system plays an essential role in innate and adaptive immunity by marking and eliminating microbial intruders. Activation of complement on foreign surfaces results in proteolytic cleavage of complement component 3 (C3) into the potent opsonin C3b, which triggers a variety of immune responses and participates in a self-amplification loop mediated by a multi-protein assembly known as the C3 convertase. The human pathogen Staphylococcus aureus has evolved a sophisticated and potent complement evasion strategy, which is predicated upon an arsenal of potent inhibitory proteins. One of these, the staphylococcal complement inhibitor (SCIN), acts at the level of the C3 convertase (C3bBb) and impairs downstream complement function by trapping the convertase in a stable but inactive state. Previously, we have shown that SCIN binds C3b directly and competitively inhibits binding of human factor H and, to a lesser degree, that of factor B to C3b. Here, we report the co-crystal structures of SCIN bound to C3b and C3c at 7.5 and 3.5 A limiting resolution, respectively, and show that SCIN binds a critical functional area on C3b. Most significantly, the SCIN binding site sterically occludes the binding sites of both factor H and factor B. Our results give insight into SCIN binding to activated derivatives of C3, explain how SCIN can recognize C3b in the absence of other complement components, and provide a structural basis for the competitive C3b-binding properties of SCIN. In the future, this may suggest templates for the design of novel complement inhibitors based upon the SCIN structure.
-
==Disease==
+
Molecular Basis for Complement Recognition and Inhibition Determined by Crystallographic Studies of the Staphylococcal Complement Inhibitor (SCIN) Bound to C3c and C3b.,Garcia BL, Ramyar KX, Tzekou A, Ricklin D, McWhorter WJ, Lambris JD, Geisbrecht BV J Mol Biol. 2010 Sep 10;402(1):17-29. Epub 2010 Jul 21. PMID:20654625<ref>PMID:20654625</ref>
-
[[http://www.uniprot.org/uniprot/CO3_HUMAN CO3_HUMAN]] Defects in C3 are the cause of complement component 3 deficiency (C3D) [MIM:[http://omim.org/entry/613779 613779]]. A rare defect of the complement classical pathway. Patients develop recurrent, severe, pyogenic infections because of ineffective opsonization of pathogens. Some patients may also develop autoimmune disorders, such as arthralgia and vasculitic rashes, lupus-like syndrome and membranoproliferative glomerulonephritis.<ref>PMID:19913840</ref><ref>PMID:9596584</ref><ref>PMID:11387479</ref><ref>PMID:15713468</ref><ref>PMID:7961791</ref>[:] Genetic variation in C3 is associated with susceptibility to age-related macular degeneration type 9 (ARMD9) [MIM:[http://omim.org/entry/611378 611378]]. ARMD is a multifactorial eye disease and the most common cause of irreversible vision loss in the developed world. In most patients, the disease is manifest as ophthalmoscopically visible yellowish accumulations of protein and lipid that lie beneath the retinal pigment epithelium and within an elastin-containing structure known as Bruch membrane.<ref>PMID:19913840</ref><ref>PMID:17634448</ref> Defects in C3 are a cause of susceptibility to hemolytic uremic syndrome atypical type 5 (AHUS5) [MIM:[http://omim.org/entry/612925 612925]]. An atypical form of hemolytic uremic syndrome. It is a complex genetic disease characterized by microangiopathic hemolytic anemia, thrombocytopenia, renal failure and absence of episodes of enterocolitis and diarrhea. In contrast to typical hemolytic uremic syndrome, atypical forms have a poorer prognosis, with higher death rates and frequent progression to end-stage renal disease. Note=Susceptibility to the development of atypical hemolytic uremic syndrome can be conferred by mutations in various components of or regulatory factors in the complement cascade system. Other genes may play a role in modifying the phenotype.<ref>PMID:19913840</ref><ref>PMID:18796626</ref><ref>PMID:20513133</ref> Note=Increased levels of C3 and its cleavage product ASP, are associated with obesity, diabetes and coronary heart disease. Short-term endurance training reduces baseline ASP levels and subsequently fat storage.<ref>PMID:19913840</ref>
+
-
==Function==
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
[[http://www.uniprot.org/uniprot/CO3_HUMAN CO3_HUMAN]] C3 plays a central role in the activation of the complement system. Its processing by C3 convertase is the central reaction in both classical and alternative complement pathways. After activation C3b can bind covalently, via its reactive thioester, to cell surface carbohydrates or immune aggregates.<ref>PMID:8376604</ref><ref>PMID:2909530</ref><ref>PMID:9059512</ref><ref>PMID:9555951</ref><ref>PMID:10432298</ref><ref>PMID:15833747</ref><ref>PMID:16333141</ref><ref>PMID:19615750</ref> Derived from proteolytic degradation of complement C3, C3a anaphylatoxin is a mediator of local inflammatory process. It induces the contraction of smooth muscle, increases vascular permeability and causes histamine release from mast cells and basophilic leukocytes.<ref>PMID:8376604</ref><ref>PMID:2909530</ref><ref>PMID:9059512</ref><ref>PMID:9555951</ref><ref>PMID:10432298</ref><ref>PMID:15833747</ref><ref>PMID:16333141</ref><ref>PMID:19615750</ref> Acylation stimulating protein (ASP): adipogenic hormone that stimulates triglyceride (TG) synthesis and glucose transport in adipocytes, regulating fat storage and playing a role in postprandial TG clearance. Appears to stimulate TG synthesis via activation of the PLC, MAPK and AKT signaling pathways. Ligand for GPR77. Promotes the phosphorylation, ARRB2-mediated internalization and recycling of GPR77.<ref>PMID:8376604</ref><ref>PMID:2909530</ref><ref>PMID:9059512</ref><ref>PMID:9555951</ref><ref>PMID:10432298</ref><ref>PMID:15833747</ref><ref>PMID:16333141</ref><ref>PMID:19615750</ref> [[http://www.uniprot.org/uniprot/SCIN_STAAM SCIN_STAAM]] Involved in countering the first line of host defense mechanisms. Efficiently inhibits opsonization, phagocytosis and killing of S.aureus by human neutrophils. Acts by binding and stabilizing human C3 convertases (C4b2a and C3bBb), leading to their inactivation. The convertases are no longer able to cleave complement C3, therefore preventing further C3b deposition on the bacterial surface and phagocytosis of the bacterium. Also prevents C5a-induced neutrophil responses (By similarity).
+
</div>
-
==About this Structure==
+
==See Also==
-
[[3nms]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [http://en.wikipedia.org/wiki/Staphylococcus_aureus Staphylococcus aureus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3NMS OCA].
+
*[[Complement C3|Complement C3]]
-
 
+
== References ==
-
==Reference==
+
<references/>
-
<ref group="xtra">PMID:020654625</ref><references group="xtra"/><references/>
+
__TOC__
 +
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Staphylococcus aureus]]
[[Category: Staphylococcus aureus]]
-
[[Category: Garcia, B L.]]
+
[[Category: Garcia, B L]]
-
[[Category: Geisbrecht, B V.]]
+
[[Category: Geisbrecht, B V]]
[[Category: Complement alternate pathway]]
[[Category: Complement alternate pathway]]
[[Category: Complement pathway]]
[[Category: Complement pathway]]

Revision as of 06:28, 19 December 2014

Staphylococcal Complement Inhibitor (SCIN) in complex with Human Complement C3c

3nms, resolution 4.10Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools