1r38

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
-
[[Image:1r38.jpg|left|200px]]<br /><applet load="1r38" size="350" color="white" frame="true" align="right" spinBox="true"
+
[[Image:1r38.jpg|left|200px]]
-
caption="1r38, resolution 2.2&Aring;" />
+
 
-
'''Crystal structure of H114A mutant of Candida tenuis xylose reductase'''<br />
+
{{Structure
 +
|PDB= 1r38 |SIZE=350|CAPTION= <scene name='initialview01'>1r38</scene>, resolution 2.2&Aring;
 +
|SITE=
 +
|LIGAND= <scene name='pdbligand=NAP:NADP NICOTINAMIDE-ADENINE-DINUCLEOTIDE PHOSPHATE'>NAP</scene>
 +
|ACTIVITY= [http://en.wikipedia.org/wiki/Aldehyde_reductase Aldehyde reductase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.1.1.21 1.1.1.21]
 +
|GENE= xylr ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=45596 Candida tenuis])
 +
}}
 +
 
 +
'''Crystal structure of H114A mutant of Candida tenuis xylose reductase'''
 +
 
==Overview==
==Overview==
Line 7: Line 16:
==About this Structure==
==About this Structure==
-
1R38 is a [http://en.wikipedia.org/wiki/Single_protein Single protein] structure of sequence from [http://en.wikipedia.org/wiki/Candida_tenuis Candida tenuis] with <scene name='pdbligand=NAP:'>NAP</scene> as [http://en.wikipedia.org/wiki/ligand ligand]. Active as [http://en.wikipedia.org/wiki/Aldehyde_reductase Aldehyde reductase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.1.1.21 1.1.1.21] Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1R38 OCA].
+
1R38 is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Candida_tenuis Candida tenuis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1R38 OCA].
==Reference==
==Reference==
-
Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant., Kratzer R, Kavanagh KL, Wilson DK, Nidetzky B, Biochemistry. 2004 May 4;43(17):4944-54. PMID:[http://ispc.weizmann.ac.il//pmbin/getpm?pmid=15109252 15109252]
+
Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant., Kratzer R, Kavanagh KL, Wilson DK, Nidetzky B, Biochemistry. 2004 May 4;43(17):4944-54. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/15109252 15109252]
[[Category: Aldehyde reductase]]
[[Category: Aldehyde reductase]]
[[Category: Candida tenuis]]
[[Category: Candida tenuis]]
Line 23: Line 32:
[[Category: dimer]]
[[Category: dimer]]
-
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Feb 21 14:46:33 2008''
+
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Mar 20 13:46:18 2008''

Revision as of 11:46, 20 March 2008


PDB ID 1r38

Drag the structure with the mouse to rotate
, resolution 2.2Å
Ligands:
Gene: xylr (Candida tenuis)
Activity: Aldehyde reductase, with EC number 1.1.1.21
Coordinates: save as pdb, mmCIF, xml



Crystal structure of H114A mutant of Candida tenuis xylose reductase


Overview

Xylose reductase from the yeast Candida tenuis (CtXR) is a family 2 member of the aldo-keto reductase (AKR) superfamily of proteins and enzymes. Active site His-113 is conserved among AKRs, but a unified mechanism of how it affects catalytic activity is outstanding. We have replaced His-113 by alanine using site-directed mutagenesis, determined a 2.2 A structure of H113A mutant bound to NADP(+), and compared catalytic reaction profiles of NADH-dependent reduction of different aldehydes catalyzed by the wild type and the mutant. Deuterium kinetic isotope effects (KIEs) on k(cat) and k(cat)/K(m xylose) show that, relative to the wild type, the hydride transfer rate constant (k(7) approximately 0.16 s(-1)) has decreased about 1000-fold in H113A whereas xylose binding was not strongly affected. No solvent isotope effect was seen on k(cat) and k(cat)/K(m xylose) for H113A, suggesting that proton transfer has not become rate-limiting as a result of the mutation. The pH profiles of log(k(cat)/K(m xylose)) for the wild type and H113A decreased above apparent pK(a) values of 8.85 and 7.63, respectively. The DeltapK(a) of -1.2 pH units likely reflects a proximally disruptive character of the mutation, affecting the position of Asp-50. A steady-state kinetic analysis for H113A-catalyzed reduction of a homologous series of meta-substituted benzaldehyde derivatives was carried out, and quantitative structure-reactivity correlations were used to factor the observed kinetic substituent effect on k(cat) and k(cat)/K(m aldehyde) into an electronic effect and bonding effects (which are lacking in the wild type). Using the Hammett sigma scale, electronic parameter coefficients (rho) of +0.64 (k(cat)) and +0.78 (k(cat)/K(m aldehyde)) were calculated and clearly differ from rho(k(cat)/K(aldehyde)) and rho(k(cat)) values of +1.67 and approximately 0.0, respectively, for the wild-type enzyme. Hydride transfer rate constants of H113A, calculated from kinetic parameters and KIE data, display a substituent dependence not seen in the corresponding wild-type enzyme rate constants. An enzymic mechanism is proposed in which His-113, through a hydrogen bond from Nepsilon2 to aldehyde O1, assists in catalysis by optimizing the C=O bond charge separation and orbital alignment in the ternary complex.

About this Structure

1R38 is a Single protein structure of sequence from Candida tenuis. Full crystallographic information is available from OCA.

Reference

Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant., Kratzer R, Kavanagh KL, Wilson DK, Nidetzky B, Biochemistry. 2004 May 4;43(17):4944-54. PMID:15109252

Page seeded by OCA on Thu Mar 20 13:46:18 2008

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools