3w33
From Proteopedia
(Difference between revisions)
												
			
			| Line 1: | Line 1: | ||
| - | + | ==EGFR kinase domain complexed with compound 19b==  | |
| - | ===EGFR kinase   | + | <StructureSection load='3w33' size='340' side='right' caption='[[3w33]], [[Resolution|resolution]] 1.70Å' scene=''>  | 
| - | + | == Structural highlights ==  | |
| - | + | <table><tr><td colspan='2'>[[3w33]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3W33 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3W33 FirstGlance]. <br>  | |
| - | ==Disease==  | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=W19:4-{[4-(1-BENZOTHIOPHEN-4-YLOXY)-3-CHLOROPHENYL]AMINO}-N-(2-HYDROXYETHYL)-8,9-DIHYDRO-7H-PYRIMIDO[4,5-B]AZEPINE-6-CARBOXAMIDE'>W19</scene></td></tr>  | 
| + | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3poz|3poz]], [[3w32|3w32]]</td></tr>  | ||
| + | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">EGFR, ERBB, ERBB1, HER1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens])</td></tr>  | ||
| + | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Receptor_protein-tyrosine_kinase Receptor protein-tyrosine kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.10.1 2.7.10.1] </span></td></tr>  | ||
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3w33 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3w33 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3w33 RCSB], [http://www.ebi.ac.uk/pdbsum/3w33 PDBsum]</span></td></tr>  | ||
| + | </table>  | ||
| + | == Disease ==  | ||
[[http://www.uniprot.org/uniprot/EGFR_HUMAN EGFR_HUMAN]] Defects in EGFR are associated with lung cancer (LNCR) [MIM:[http://omim.org/entry/211980 211980]]. LNCR is a common malignancy affecting tissues of the lung. The most common form of lung cancer is non-small cell lung cancer (NSCLC) that can be divided into 3 major histologic subtypes: squamous cell carcinoma, adenocarcinoma, and large cell lung cancer. NSCLC is often diagnosed at an advanced stage and has a poor prognosis.   | [[http://www.uniprot.org/uniprot/EGFR_HUMAN EGFR_HUMAN]] Defects in EGFR are associated with lung cancer (LNCR) [MIM:[http://omim.org/entry/211980 211980]]. LNCR is a common malignancy affecting tissues of the lung. The most common form of lung cancer is non-small cell lung cancer (NSCLC) that can be divided into 3 major histologic subtypes: squamous cell carcinoma, adenocarcinoma, and large cell lung cancer. NSCLC is often diagnosed at an advanced stage and has a poor prognosis.   | ||
| - | + | == Function ==  | |
| - | ==Function==  | + | |
[[http://www.uniprot.org/uniprot/EGFR_HUMAN EGFR_HUMAN]] Receptor tyrosine kinase binding ligands of the EGF family and activating several signaling cascades to convert extracellular cues into appropriate cellular responses. Known ligands include EGF, TGFA/TGF-alpha, amphiregulin, epigen/EPGN, BTC/betacellulin, epiregulin/EREG and HBEGF/heparin-binding EGF. Ligand binding triggers receptor homo- and/or heterodimerization and autophosphorylation on key cytoplasmic residues. The phosphorylated receptor recruits adapter proteins like GRB2 which in turn activates complex downstream signaling cascades. Activates at least 4 major downstream signaling cascades including the RAS-RAF-MEK-ERK, PI3 kinase-AKT, PLCgamma-PKC and STATs modules. May also activate the NF-kappa-B signaling cascade. Also directly phosphorylates other proteins like RGS16, activating its GTPase activity and probably coupling the EGF receptor signaling to the G protein-coupled receptor signaling. Also phosphorylates MUC1 and increases its interaction with SRC and CTNNB1/beta-catenin.<ref>PMID:7657591</ref> <ref>PMID:11602604</ref> <ref>PMID:12873986</ref> <ref>PMID:10805725</ref> <ref>PMID:11116146</ref> <ref>PMID:11483589</ref> <ref>PMID:17115032</ref> <ref>PMID:21258366</ref> <ref>PMID:12297050</ref> <ref>PMID:12620237</ref> <ref>PMID:15374980</ref> <ref>PMID:19560417</ref> <ref>PMID:20837704</ref>   Isoform 2 may act as an antagonist of EGF action.<ref>PMID:7657591</ref> <ref>PMID:11602604</ref> <ref>PMID:12873986</ref> <ref>PMID:10805725</ref> <ref>PMID:11116146</ref> <ref>PMID:11483589</ref> <ref>PMID:17115032</ref> <ref>PMID:21258366</ref> <ref>PMID:12297050</ref> <ref>PMID:12620237</ref> <ref>PMID:15374980</ref> <ref>PMID:19560417</ref> <ref>PMID:20837704</ref>    | [[http://www.uniprot.org/uniprot/EGFR_HUMAN EGFR_HUMAN]] Receptor tyrosine kinase binding ligands of the EGF family and activating several signaling cascades to convert extracellular cues into appropriate cellular responses. Known ligands include EGF, TGFA/TGF-alpha, amphiregulin, epigen/EPGN, BTC/betacellulin, epiregulin/EREG and HBEGF/heparin-binding EGF. Ligand binding triggers receptor homo- and/or heterodimerization and autophosphorylation on key cytoplasmic residues. The phosphorylated receptor recruits adapter proteins like GRB2 which in turn activates complex downstream signaling cascades. Activates at least 4 major downstream signaling cascades including the RAS-RAF-MEK-ERK, PI3 kinase-AKT, PLCgamma-PKC and STATs modules. May also activate the NF-kappa-B signaling cascade. Also directly phosphorylates other proteins like RGS16, activating its GTPase activity and probably coupling the EGF receptor signaling to the G protein-coupled receptor signaling. Also phosphorylates MUC1 and increases its interaction with SRC and CTNNB1/beta-catenin.<ref>PMID:7657591</ref> <ref>PMID:11602604</ref> <ref>PMID:12873986</ref> <ref>PMID:10805725</ref> <ref>PMID:11116146</ref> <ref>PMID:11483589</ref> <ref>PMID:17115032</ref> <ref>PMID:21258366</ref> <ref>PMID:12297050</ref> <ref>PMID:12620237</ref> <ref>PMID:15374980</ref> <ref>PMID:19560417</ref> <ref>PMID:20837704</ref>   Isoform 2 may act as an antagonist of EGF action.<ref>PMID:7657591</ref> <ref>PMID:11602604</ref> <ref>PMID:12873986</ref> <ref>PMID:10805725</ref> <ref>PMID:11116146</ref> <ref>PMID:11483589</ref> <ref>PMID:17115032</ref> <ref>PMID:21258366</ref> <ref>PMID:12297050</ref> <ref>PMID:12620237</ref> <ref>PMID:15374980</ref> <ref>PMID:19560417</ref> <ref>PMID:20837704</ref>    | ||
| + | <div style="background-color:#fffaf0;">  | ||
| + | == Publication Abstract from PubMed ==  | ||
| + | A novel 7,6 fused bicyclic scaffold, pyrimido[4,5-b]azepine was designed to fit into the ATP binding site of the HER2/EGFR proteins. The synthesis of this scaffold was accomplished by an intramolecular Claisen-type condensation. As the results of optimization lead us to 4-anilino and 6-functional groups, we discovered 6-substituted amide derivative 19b, which has a 1-benzothiophen-4-yloxy group attached to the 4-anilino group. An X-ray co-crystal structure of 19b with EGFR demonstrated that the N-1 and N-3 nitrogens of the pyrimido[4,5-b]azepine scaffold make hydrogen-bonding interactions with the main chain NH of Met793 and the side chain of Thr854 via a water-mediated hydrogen bond network, respectively. In addition, the NH proton at the 9-position makes an additional hydrogen bond with the carbonyl group of Met793, as we expected. Compound 19b revealed potent HER2/EGFR kinase (IC50: 24/36 nM) and BT474 cell growth (GI50: 18 nM) inhibitory activities based on its pseudo-irreversible (PI) profile.  | ||
| - | + | Design and synthesis of novel pyrimido[4,5-b]azepine derivatives as HER2/EGFR dual inhibitors.,Kawakita Y, Seto M, Ohashi T, Tamura T, Yusa T, Miki H, Iwata H, Kamiguchi H, Tanaka T, Sogabe S, Ohta Y, Ishikawa T Bioorg Med Chem. 2013 Apr 15;21(8):2250-61. doi: 10.1016/j.bmc.2013.02.014. Epub , 2013 Feb 22. PMID:23490150<ref>PMID:23490150</ref>  | |
| - | [  | + | |
| + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>  | ||
| + | </div>  | ||
==See Also==  | ==See Also==  | ||
*[[Epidermal Growth Factor Receptor|Epidermal Growth Factor Receptor]]  | *[[Epidermal Growth Factor Receptor|Epidermal Growth Factor Receptor]]  | ||
| - | + | == References ==  | |
| - | ==  | + | <references/>  | 
| - | + | __TOC__  | |
| + | </StructureSection>  | ||
[[Category: Homo sapiens]]  | [[Category: Homo sapiens]]  | ||
[[Category: Receptor protein-tyrosine kinase]]  | [[Category: Receptor protein-tyrosine kinase]]  | ||
| - | [[Category: Kawakita, Y  | + | [[Category: Kawakita, Y]]  | 
| - | [[Category: Sogabe, S  | + | [[Category: Sogabe, S]]  | 
[[Category: Anti-oncogene]]  | [[Category: Anti-oncogene]]  | ||
[[Category: Cell cycle]]  | [[Category: Cell cycle]]  | ||
Revision as of 06:59, 21 December 2014
EGFR kinase domain complexed with compound 19b
  | |||||||||||
