4kd1
From Proteopedia
(Difference between revisions)
| Line 1: | Line 1: | ||
| - | + | ==CDK2 in complex with Dinaciclib== | |
| - | ===CDK2 | + | <StructureSection load='4kd1' size='340' side='right' caption='[[4kd1]], [[Resolution|resolution]] 1.70Å' scene=''> |
| - | + | == Structural highlights == | |
| - | + | <table><tr><td colspan='2'>[[4kd1]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4KD1 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4KD1 FirstGlance]. <br> | |
| - | ==Function== | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=1QK:3-[({3-ETHYL-5-[(2S)-2-(2-HYDROXYETHYL)PIPERIDIN-1-YL]PYRAZOLO[1,5-A]PYRIMIDIN-7-YL}AMINO)METHYL]-1-HYDROXYPYRIDINIUM'>1QK</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene></td></tr> |
| + | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CDK2, CDKN2 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | ||
| + | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Cyclin-dependent_kinase Cyclin-dependent kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.11.22 2.7.11.22] </span></td></tr> | ||
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4kd1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4kd1 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4kd1 RCSB], [http://www.ebi.ac.uk/pdbsum/4kd1 PDBsum]</span></td></tr> | ||
| + | </table> | ||
| + | == Function == | ||
[[http://www.uniprot.org/uniprot/CDK2_HUMAN CDK2_HUMAN]] Serine/threonine-protein kinase involved in the control of the cell cycle; essential for meiosis, but dispensable for mitosis. Phosphorylates CTNNB1, USP37, p53/TP53, NPM1, CDK7, RB1, BRCA2, MYC, NPAT, EZH2. Interacts with cyclins A, B1, B3, D, or E. Triggers duplication of centrosomes and DNA. Acts at the G1-S transition to promote the E2F transcriptional program and the initiation of DNA synthesis, and modulates G2 progression; controls the timing of entry into mitosis/meiosis by controlling the subsequent activation of cyclin B/CDK1 by phosphorylation, and coordinates the activation of cyclin B/CDK1 at the centrosome and in the nucleus. Crucial role in orchestrating a fine balance between cellular proliferation, cell death, and DNA repair in human embryonic stem cells (hESCs). Activity of CDK2 is maximal during S phase and G2; activated by interaction with cyclin E during the early stages of DNA synthesis to permit G1-S transition, and subsequently activated by cyclin A2 (cyclin A1 in germ cells) during the late stages of DNA replication to drive the transition from S phase to mitosis, the G2 phase. EZH2 phosphorylation promotes H3K27me3 maintenance and epigenetic gene silencing. Phosphorylates CABLES1 (By similarity). Cyclin E/CDK2 prevents oxidative stress-mediated Ras-induced senescence by phosphorylating MYC. Involved in G1-S phase DNA damage checkpoint that prevents cells with damaged DNA from initiating mitosis; regulates homologous recombination-dependent repair by phosphorylating BRCA2, this phosphorylation is low in S phase when recombination is active, but increases as cells progress towards mitosis. In response to DNA damage, double-strand break repair by homologous recombination a reduction of CDK2-mediated BRCA2 phosphorylation. Phosphorylation of RB1 disturbs its interaction with E2F1. NPM1 phosphorylation by cyclin E/CDK2 promotes its dissociates from unduplicated centrosomes, thus initiating centrosome duplication. Cyclin E/CDK2-mediated phosphorylation of NPAT at G1-S transition and until prophase stimulates the NPAT-mediated activation of histone gene transcription during S phase. Required for vitamin D-mediated growth inhibition by being itself inactivated. Involved in the nitric oxide- (NO) mediated signaling in a nitrosylation/activation-dependent manner. USP37 is activated by phosphorylation and thus triggers G1-S transition. CTNNB1 phosphorylation regulates insulin internalization.<ref>PMID:10499802</ref> <ref>PMID:11051553</ref> <ref>PMID:10995386</ref> <ref>PMID:10995387</ref> <ref>PMID:10884347</ref> <ref>PMID:11113184</ref> <ref>PMID:15800615</ref> <ref>PMID:18372919</ref> <ref>PMID:20147522</ref> <ref>PMID:20079829</ref> <ref>PMID:20935635</ref> <ref>PMID:20195506</ref> <ref>PMID:19966300</ref> <ref>PMID:21262353</ref> <ref>PMID:21596315</ref> <ref>PMID:21319273</ref> <ref>PMID:17495531</ref> | [[http://www.uniprot.org/uniprot/CDK2_HUMAN CDK2_HUMAN]] Serine/threonine-protein kinase involved in the control of the cell cycle; essential for meiosis, but dispensable for mitosis. Phosphorylates CTNNB1, USP37, p53/TP53, NPM1, CDK7, RB1, BRCA2, MYC, NPAT, EZH2. Interacts with cyclins A, B1, B3, D, or E. Triggers duplication of centrosomes and DNA. Acts at the G1-S transition to promote the E2F transcriptional program and the initiation of DNA synthesis, and modulates G2 progression; controls the timing of entry into mitosis/meiosis by controlling the subsequent activation of cyclin B/CDK1 by phosphorylation, and coordinates the activation of cyclin B/CDK1 at the centrosome and in the nucleus. Crucial role in orchestrating a fine balance between cellular proliferation, cell death, and DNA repair in human embryonic stem cells (hESCs). Activity of CDK2 is maximal during S phase and G2; activated by interaction with cyclin E during the early stages of DNA synthesis to permit G1-S transition, and subsequently activated by cyclin A2 (cyclin A1 in germ cells) during the late stages of DNA replication to drive the transition from S phase to mitosis, the G2 phase. EZH2 phosphorylation promotes H3K27me3 maintenance and epigenetic gene silencing. Phosphorylates CABLES1 (By similarity). Cyclin E/CDK2 prevents oxidative stress-mediated Ras-induced senescence by phosphorylating MYC. Involved in G1-S phase DNA damage checkpoint that prevents cells with damaged DNA from initiating mitosis; regulates homologous recombination-dependent repair by phosphorylating BRCA2, this phosphorylation is low in S phase when recombination is active, but increases as cells progress towards mitosis. In response to DNA damage, double-strand break repair by homologous recombination a reduction of CDK2-mediated BRCA2 phosphorylation. Phosphorylation of RB1 disturbs its interaction with E2F1. NPM1 phosphorylation by cyclin E/CDK2 promotes its dissociates from unduplicated centrosomes, thus initiating centrosome duplication. Cyclin E/CDK2-mediated phosphorylation of NPAT at G1-S transition and until prophase stimulates the NPAT-mediated activation of histone gene transcription during S phase. Required for vitamin D-mediated growth inhibition by being itself inactivated. Involved in the nitric oxide- (NO) mediated signaling in a nitrosylation/activation-dependent manner. USP37 is activated by phosphorylation and thus triggers G1-S transition. CTNNB1 phosphorylation regulates insulin internalization.<ref>PMID:10499802</ref> <ref>PMID:11051553</ref> <ref>PMID:10995386</ref> <ref>PMID:10995387</ref> <ref>PMID:10884347</ref> <ref>PMID:11113184</ref> <ref>PMID:15800615</ref> <ref>PMID:18372919</ref> <ref>PMID:20147522</ref> <ref>PMID:20079829</ref> <ref>PMID:20935635</ref> <ref>PMID:20195506</ref> <ref>PMID:19966300</ref> <ref>PMID:21262353</ref> <ref>PMID:21596315</ref> <ref>PMID:21319273</ref> <ref>PMID:17495531</ref> | ||
| + | <div style="background-color:#fffaf0;"> | ||
| + | == Publication Abstract from PubMed == | ||
| + | Bromodomain-containing proteins are considered atypical kinases, but their potential to interact with kinase inhibitors is unknown. Dinaciclib is a potent inhibitor of cyclin-dependent kinases (CDKs), which recently advanced to Phase III clinical trials for the treatment of leukemia. We determined the crystal structure of dinaciclib in complex with CDK2 at 1.7 A resolution, revealing an elaborate network of binding interactions in the ATP site, which explains the extraordinary potency and selectivity of this inhibitor. Remarkably, dinaciclib also interacted with the acetyl-lysine recognition site of the bromodomain testis-specific protein BRDT, a member of the BET family of bromodomains. The binding mode of dinaciclib to BRDT at 2.0 A resolution suggests that general kinase inhibitors ("hinge binders") possess a previously unrecognized potential to act as protein-protein inhibitors of bromodomains. The findings may provide a new structural framework for the design of next-generation bromodomain inhibitors using the vast chemical space of kinase inhibitors. | ||
| + | |||
| + | Cyclin-Dependent Kinase Inhibitor Dinaciclib Interacts with the Acetyl-Lysine Recognition Site of Bromodomains.,Martin MP, Olesen SH, Georg GI, Schonbrunn E ACS Chem Biol. 2013 Sep 10. PMID:24007471<ref>PMID:24007471</ref> | ||
| - | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
| - | + | </div> | |
| - | == | + | ==See Also== |
| - | + | *[[Cell division protein kinase 2|Cell division protein kinase 2]] | |
| + | == References == | ||
| + | <references/> | ||
| + | __TOC__ | ||
| + | </StructureSection> | ||
[[Category: Cyclin-dependent kinase]] | [[Category: Cyclin-dependent kinase]] | ||
[[Category: Human]] | [[Category: Human]] | ||
| - | [[Category: Martin, M P | + | [[Category: Martin, M P]] |
| - | [[Category: Schonbrunn, E | + | [[Category: Schonbrunn, E]] |
[[Category: Cell cycle-inhibitor complex]] | [[Category: Cell cycle-inhibitor complex]] | ||
[[Category: Dinaciclib]] | [[Category: Dinaciclib]] | ||
[[Category: Protein kinase]] | [[Category: Protein kinase]] | ||
[[Category: Transferase-transferase]] | [[Category: Transferase-transferase]] | ||
Revision as of 13:42, 24 December 2014
CDK2 in complex with Dinaciclib
| |||||||||||
