4ix9
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | + | ==Crystal structure of subunit F of V-ATPase from S. cerevisiae== | |
- | + | <StructureSection load='4ix9' size='340' side='right' caption='[[4ix9]], [[Resolution|resolution]] 2.33Å' scene=''> | |
- | + | == Structural highlights == | |
- | + | <table><tr><td colspan='2'>[[4ix9]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae_s288c Saccharomyces cerevisiae s288c]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4IX9 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4IX9 FirstGlance]. <br> | |
- | ==Function== | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=TRS:2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL'>TRS</scene></td></tr> |
+ | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | ||
+ | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">VMA7, YGR020C ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=559292 Saccharomyces cerevisiae S288c])</td></tr> | ||
+ | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/H(+)-transporting_two-sector_ATPase H(+)-transporting two-sector ATPase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.6.3.14 3.6.3.14] </span></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4ix9 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4ix9 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4ix9 RCSB], [http://www.ebi.ac.uk/pdbsum/4ix9 PDBsum]</span></td></tr> | ||
+ | </table> | ||
+ | == Function == | ||
[[http://www.uniprot.org/uniprot/VATF_YEAST VATF_YEAST]] Subunit of the peripheral V1 complex of vacuolar ATPase essential for assembly or catalytic function. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells. | [[http://www.uniprot.org/uniprot/VATF_YEAST VATF_YEAST]] Subunit of the peripheral V1 complex of vacuolar ATPase essential for assembly or catalytic function. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells. | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Subunit F of V-ATPases is proposed to undergo structural alterations during catalysis and reversible dissociation from the V1VO complex. Recently, we determined the low resolution structure of F from Saccharomyces cerevisiae V-ATPase, showing an N-terminal egg shape, connected to a C-terminal hook-like segment via a linker region. To understand the mechanistic role of subunit F of S. cerevisiae V-ATPase, composed of 118 amino acids, the crystal structure of the major part of F, F(1-94), was solved at 2.3 A resolution. The structural features were confirmed by solution NMR spectroscopy using the entire F subunit. The eukaryotic F subunit consists of the N-terminal F(1-94) domain with four-parallel beta-strands, which are intermittently surrounded by four alpha-helices, and the C terminus, including the alpha5-helix encompassing residues 103 to 113. Two loops (26)GQITPETQEK(35) and (60)ERDDI(64) are described to be essential in mechanistic processes of the V-ATPase enzyme. The (26)GQITPETQEK(35) loop becomes exposed when fitted into the recently determined EM structure of the yeast V1VO-ATPase. A mechanism is proposed in which the (26)GQITPETQEK(35) loop of subunit F and the flexible C-terminal domain of subunit H move in proximity, leading to an inhibitory effect of ATPase activity in V1. Subunits D and F are demonstrated to interact with subunit d. Together with NMR dynamics, the role of subunit F has been discussed in the light of its interactions in the processes of reversible disassembly and ATP hydrolysis of V-ATPases by transmitting movements of subunit d and H of the VO and V1 sector, respectively. | ||
+ | |||
+ | Crystal and NMR structures give insights into the role and dynamics of subunit F of the eukaryotic V-ATPase from Saccharomyces cerevisiae.,Basak S, Lim J, Manimekalai MS, Balakrishna AM, Gruber G J Biol Chem. 2013 Apr 26;288(17):11930-9. doi: 10.1074/jbc.M113.461533. Epub 2013, Mar 8. PMID:23476018<ref>PMID:23476018</ref> | ||
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | == | + | ==See Also== |
- | + | *[[ATPase|ATPase]] | |
+ | == References == | ||
+ | <references/> | ||
+ | __TOC__ | ||
+ | </StructureSection> | ||
[[Category: Saccharomyces cerevisiae s288c]] | [[Category: Saccharomyces cerevisiae s288c]] | ||
- | [[Category: Balakrishna, A M | + | [[Category: Balakrishna, A M]] |
- | [[Category: Basak, S | + | [[Category: Basak, S]] |
- | [[Category: Gruber, G | + | [[Category: Gruber, G]] |
- | [[Category: Manimekalai, M S.S | + | [[Category: Manimekalai, M S.S]] |
[[Category: Coupling]] | [[Category: Coupling]] | ||
[[Category: Hydrolase]] | [[Category: Hydrolase]] |
Revision as of 03:51, 25 December 2014
Crystal structure of subunit F of V-ATPase from S. cerevisiae
|