3wtp
From Proteopedia
(Difference between revisions)
Line 5: | Line 5: | ||
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3wtp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3wtp OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3wtp RCSB], [http://www.ebi.ac.uk/pdbsum/3wtp PDBsum]</span></td></tr> | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3wtp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3wtp OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3wtp RCSB], [http://www.ebi.ac.uk/pdbsum/3wtp PDBsum]</span></td></tr> | ||
</table> | </table> | ||
+ | == Function == | ||
+ | [[http://www.uniprot.org/uniprot/H2B1J_HUMAN H2B1J_HUMAN]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.<ref>PMID:11859126</ref> <ref>PMID:12860195</ref> <ref>PMID:15019208</ref> Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.<ref>PMID:11859126</ref> <ref>PMID:12860195</ref> <ref>PMID:15019208</ref> [[http://www.uniprot.org/uniprot/CENPA_HUMAN CENPA_HUMAN]] Histone H3-like variant which exclusively replaces conventional H3 in the nucleosome core of centromeric chromatin at the inner plate of the kinetochore. Required for recruitment and assembly of kinetochore proteins, mitotic progression and chromosome segregation. May serve as an epigenetic mark that propagates centromere identity through replication and cell division. The CENPA-H4 heterotetramer can bind DNA by itself (in vitro).<ref>PMID:20739937</ref> <ref>PMID:21478274</ref> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == |
Revision as of 11:08, 25 December 2014
Crystal Structure of the heterotypic nucleosome containing human CENP-A and H3.3
|