4lp5
From Proteopedia
(Difference between revisions)
Line 7: | Line 7: | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4lp5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4lp5 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4lp5 RCSB], [http://www.ebi.ac.uk/pdbsum/4lp5 PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4lp5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4lp5 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4lp5 RCSB], [http://www.ebi.ac.uk/pdbsum/4lp5 PDBsum]</span></td></tr> | ||
</table> | </table> | ||
+ | == Function == | ||
+ | [[http://www.uniprot.org/uniprot/RAGE_HUMAN RAGE_HUMAN]] Mediates interactions of advanced glycosylation end products (AGE). These are nonenzymatically glycosylated proteins which accumulate in vascular tissue in aging and at an accelerated rate in diabetes. Acts as a mediator of both acute and chronic vascular inflammation in conditions such as atherosclerosis and in particular as a complication of diabetes. AGE/RAGE signaling plays an important role in regulating the production/expression of TNF-alpha, oxidative stress, and endothelial dysfunction in type 2 diabetes. Interaction with S100A12 on endothelium, mononuclear phagocytes, and lymphocytes triggers cellular activation, with generation of key proinflammatory mediators. Interaction with S100B after myocardial infarction may play a role in myocyte apoptosis by activating ERK1/2 and p53/TP53 signaling (By similarity). Receptor for amyloid beta peptide. Contributes to the translocation of amyloid-beta peptide (ABPP) across the cell membrane from the extracellular to the intracellular space in cortical neurons. ABPP-initiated RAGE signaling, especially stimulation of p38 mitogen-activated protein kinase (MAPK), has the capacity to drive a transport system delivering ABPP as a complex with RAGE to the intraneuronal space.<ref>PMID:19906677</ref> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == |
Revision as of 16:37, 25 December 2014
Crystal structure of the full-length human RAGE extracellular domain (VC1C2 fragment)
|