Sandbox Reserved 955

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 2: Line 2:
'''X-ray crystallographic structure of a complex between a synthetic protease of human immunodeficiency virus 1 and a substrate-based hydroxyethylamine inhibitor'''
'''X-ray crystallographic structure of a complex between a synthetic protease of human immunodeficiency virus 1 and a substrate-based hydroxyethylamine inhibitor'''
<StructureSection load='7hvp' size='340' side='right' caption='Caption for this structure' scene=''>
<StructureSection load='7hvp' size='340' side='right' caption='Caption for this structure' scene=''>
-
This is a default text for your page ''''''. Click above on '''edit this page''' to modify. Be careful with the &lt; and &gt; signs.
+
 
-
You may include any references to papers as in: the use of JSmol in Proteopedia <ref>DOI 10.1002/ijch.201300024</ref> or to the article describing Jmol <ref>PMID:21638687</ref> to the rescue.
+
== Description ==
== Description ==
Line 17: Line 16:
HIV-1 protease has a crucial importance in drug design as inhbition of it makes the virus noninfective. It prevents formation of mature protein of the HIV virus. The most encouraging inhibtors are the hydroxyethylamine substrate-based inhibitors which led to the discovery of the first protease inhibitor, saquinavir. But mutations coding for alteration of the active site conformation facilitates resistance to protease inhibitors. Structure comprehension of HIV protease through structural analysis is crucial to design inhibitors to slow down worldwide AIDS spreading epidemic.
HIV-1 protease has a crucial importance in drug design as inhbition of it makes the virus noninfective. It prevents formation of mature protein of the HIV virus. The most encouraging inhibtors are the hydroxyethylamine substrate-based inhibitors which led to the discovery of the first protease inhibitor, saquinavir. But mutations coding for alteration of the active site conformation facilitates resistance to protease inhibitors. Structure comprehension of HIV protease through structural analysis is crucial to design inhibitors to slow down worldwide AIDS spreading epidemic.
-
This is a sample scene created with SAT to <scene name="/12/3456/Sample/1">color</scene> by Group, and another to make <scene name="/12/3456/Sample/2">a transparent representation</scene> of the protein. You can make your own scenes on SAT starting from scratch or loading and editing one of these sample scenes.
 
</StructureSection>
</StructureSection>
== References ==
== References ==
<references/>
<references/>

Revision as of 11:16, 29 December 2014

This Sandbox is Reserved from 15/11/2014, through 15/05/2015 for use in the course "Biomolecule" taught by Bruno Kieffer at the Strasbourg University. This reservation includes Sandbox Reserved 951 through Sandbox Reserved 975.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • Click the 3D button (when editing, above the wikitext box) to insert Jmol.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

X-ray crystallographic structure of a complex between a synthetic protease of human immunodeficiency virus 1 and a substrate-based hydroxyethylamine inhibitor

Caption for this structure

Drag the structure with the mouse to rotate

References

  1. http://en.wikipedia.org/wiki/HIV-1_protease
  2. http://biology.kenyon.edu/BMB/Jmol2008/2uxz/index.html#Inhibitor
Personal tools