3uxk
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | + | ==P. putida mandelate racemase co-crystallized with the intermediate analogue benzohydroxamate== | |
- | + | <StructureSection load='3uxk' size='340' side='right' caption='[[3uxk]], [[Resolution|resolution]] 2.20Å' scene=''> | |
- | + | == Structural highlights == | |
+ | <table><tr><td colspan='2'>[[3uxk]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Pseudomonas_putida Pseudomonas putida]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3UXK OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3UXK FirstGlance]. <br> | ||
+ | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BHO:BENZHYDROXAMIC+ACID'>BHO</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | ||
+ | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1mdr|1mdr]], [[3uxl|3uxl]]</td></tr> | ||
+ | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">mdlA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=303 Pseudomonas putida])</td></tr> | ||
+ | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Mandelate_racemase Mandelate racemase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=5.1.2.2 5.1.2.2] </span></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3uxk FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3uxk OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3uxk RCSB], [http://www.ebi.ac.uk/pdbsum/3uxk PDBsum]</span></td></tr> | ||
+ | </table> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Mandelate racemase (MR, EC 5.1.2.2) from Pseudomonas putida catalyzes the Mg(2+)-dependent interconversion of the enantiomers of mandelate, stabilizing the altered substrate in the transition state by 26 kcal/mol relative to the substrate in the ground state. To understand the origins of this binding discrimination, we determined the X-ray crystal structures of wild-type MR complexed with two analogues of the putative aci-carboxylate intermediate, benzohydroxamate and Cupferron, to 2.2-A resolution. Benzohydroxamate is shown to be a reasonable mimic of the transition state and/or intermediate because its binding affinity for 21 MR variants correlates well with changes in the free energy of transition state stabilization afforded by these variants. Both benzohydroxamate and Cupferron chelate the active site divalent metal ion and are bound in a conformation with the phenyl ring coplanar with the hydroxamate and diazeniumdiolate moieties, respectively. Structural overlays of MR complexed with benzohydroxamate, Cupferron, and the ground state analogue (S)-atrolactate reveal that the para carbon of the substrate phenyl ring moves by 0.8-1.2 A between the ground state and intermediate state, consistent with the proposal that the phenyl ring moves during MR catalysis while the polar groups remain relatively fixed. Although the overall protein structure of MR with bound intermediate analogues is very similar to that of MR with bound (S)-atrolactate, the intermediate-Mg(2+) distance becomes shorter, suggesting a tighter complex with the catalytic Mg(2+). In addition, Tyr 54 moves closer to the phenyl ring of the bound intermediate analogues, contributing to an overall constriction of the active site cavity. However, site-directed mutagenesis experiments revealed that the role of Tyr 54 in MR catalysis is relatively minor, suggesting that alterations in enzyme structure that contribute to discrimination between the altered substrate in the transition state and the ground state by this proficient enzyme are extremely subtle. | ||
- | + | Structure of Mandelate Racemase with Bound Intermediate Analogues Benzohydroxamate and Cupferron.,Lietzan AD, Nagar M, Pellmann EA, Bourque JR, Bearne SL, St Maurice M Biochemistry. 2012 Feb 3. PMID:22264153<ref>PMID:22264153</ref> | |
- | + | ||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
==See Also== | ==See Also== | ||
*[[Mandelate racemase|Mandelate racemase]] | *[[Mandelate racemase|Mandelate racemase]] | ||
- | + | == References == | |
- | == | + | <references/> |
- | < | + | __TOC__ |
+ | </StructureSection> | ||
[[Category: Mandelate racemase]] | [[Category: Mandelate racemase]] | ||
[[Category: Pseudomonas putida]] | [[Category: Pseudomonas putida]] | ||
- | [[Category: Lietzan, A D | + | [[Category: Lietzan, A D]] |
- | [[Category: Maurice, M St | + | [[Category: Maurice, M St]] |
- | [[Category: Pellmann, E | + | [[Category: Pellmann, E]] |
[[Category: Enolase superfamily enzyme]] | [[Category: Enolase superfamily enzyme]] | ||
[[Category: Isomerase]] | [[Category: Isomerase]] |
Revision as of 09:33, 4 January 2015
P. putida mandelate racemase co-crystallized with the intermediate analogue benzohydroxamate
|