Tachyplesin
From Proteopedia
(Difference between revisions)
| Line 42: | Line 42: | ||
<scene name='67/671725/Cdt/1'>Cystein Deleted Tachyplesin</scene> (CDT) is a linear mutant lacking the cysteines and therefore lacking the disulfide bonds (NH₂-Lys-Trp-Phe-Arg-Val-Tyr-Arg-Gly-Ile-Tyr-Arg-Arg-Arg-CONH₂). It contains a broad spectrum of bactericidal activity with a reduced hemolytic property that stems from selective interactions with the negatively charged lipids including LPS. | <scene name='67/671725/Cdt/1'>Cystein Deleted Tachyplesin</scene> (CDT) is a linear mutant lacking the cysteines and therefore lacking the disulfide bonds (NH₂-Lys-Trp-Phe-Arg-Val-Tyr-Arg-Gly-Ile-Tyr-Arg-Arg-Arg-CONH₂). It contains a broad spectrum of bactericidal activity with a reduced hemolytic property that stems from selective interactions with the negatively charged lipids including LPS. | ||
| - | CDT has been demonstrated to markedly inhibit the growth of Gram negative and Gram positive bacterial strains akin to TP-I. But, minimum inhibitory concentration (MIC) values for CDT were found to be lower against <i> | + | CDT has been demonstrated to markedly inhibit the growth of Gram negative and Gram positive bacterial strains akin to TP-I. But, minimum inhibitory concentration (MIC) values for CDT were found to be lower against <i>Escherichia coli</i> and <i>Listeria monocytogenes</i> in comparison to the wild type TP-I peptide. |
| - | + | ||
<b><u> CDT Structure </u></b> | <b><u> CDT Structure </u></b> | ||
| Line 49: | Line 48: | ||
CDT, like TP-1, has a β-turn in the <scene name='67/671725/Cdtturn/2'>same preserved residues</scene> in its LPS-bound structure. | CDT, like TP-1, has a β-turn in the <scene name='67/671725/Cdtturn/2'>same preserved residues</scene> in its LPS-bound structure. | ||
The β-hairpin topology of CDT is sustained by the <scene name='67/671725/Cdthaipin/2'>unique packing interactions</scene> between the aromatic ring of Trp2 and the sidechain of nonpolar amino acid of Val5 and the cationic sidechain of residue Arg11. | The β-hairpin topology of CDT is sustained by the <scene name='67/671725/Cdthaipin/2'>unique packing interactions</scene> between the aromatic ring of Trp2 and the sidechain of nonpolar amino acid of Val5 and the cationic sidechain of residue Arg11. | ||
| - | There is a close proximity between residues <scene name='67/671725/Cdtnoe/1'>Trp2 and Ile9</scene>, supported by the [http://en.wikipedia.org/wiki/Nuclear_Overhauser_effect nuclear overhauser effects (NOEs)] involving [http://en.wikipedia.org/wiki/Indole indole] ring protons of Trp2 with sidechain proton of Ile9. These packing interactions have rendered an approximate anti-parallel orientation of the hairpin structure of CDT in LPS. | + | There is a close proximity between residues <scene name='67/671725/Cdtnoe/1'>Trp2 and Ile9</scene>, supported by the [http://en.wikipedia.org/wiki/Nuclear_Overhauser_effect nuclear overhauser effects (NOEs)] involving [http://en.wikipedia.org/wiki/Indole indole] ring protons of Trp2 with sidechain proton of Ile9. These packing interactions have rendered an approximate anti-parallel orientation of the hairpin structure of CDT in presence of LPS. |
The β-hairpin like structure of CDT displays an extended <font color='darkblue'>positively charged</font> surface patch of <scene name='67/671725/Cdtr4r7r12r13/1'>residues Arg 4, 7, 12 and 13</scene>. These basic residues would be interacting, salt bridges and/or hydrogen bonds, with the anionic phosphate groups of LPS. | The β-hairpin like structure of CDT displays an extended <font color='darkblue'>positively charged</font> surface patch of <scene name='67/671725/Cdtr4r7r12r13/1'>residues Arg 4, 7, 12 and 13</scene>. These basic residues would be interacting, salt bridges and/or hydrogen bonds, with the anionic phosphate groups of LPS. | ||
Revision as of 14:14, 5 January 2015
Introduction
| |||||||||||
References
- ↑ 1.0 1.1 1.2 Laederach A, Andreotti AH, Fulton DB. Solution and micelle-bound structures of tachyplesin I and its active aromatic linear derivatives. Biochemistry. 2002 Oct 15;41(41):12359-68. PMID:12369825
- ↑ 2.0 2.1 PMID:11289111
- ↑ Nakamura, Takanori, et al. "Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus tridentatus). Isolation and chemical structure." Journal of Biological Chemistry 263.32 (1988): 16709-16713
- ↑ Kushibiki T, Kamiya M, Aizawa T, Kumaki Y, Kikukawa T, Mizuguchi M, Demura M, Kawabata SI, Kawano K. Interaction between tachyplesin I, an antimicrobial peptide derived from horseshoe crab, and lipopolysaccharide. Biochim Biophys Acta. 2014 Jan 2;1844(3):527-534. doi:, 10.1016/j.bbapap.2013.12.017. PMID:24389234 doi:http://dx.doi.org/10.1016/j.bbapap.2013.12.017
- ↑ 5.0 5.1 Saravanan R, Mohanram H, Joshi M, Domadia PN, Torres J, Ruedl C, Bhattacharjya S. Structure, activity and interactions of the cysteine deleted analog of tachyplesin-1 with lipopolysaccharide micelle: Mechanistic insights into outer-membrane permeabilization and endotoxin neutralization. Biochim Biophys Acta. 2012 Mar 23;1818(7):1613-1624. PMID:22464970 doi:10.1016/j.bbamem.2012.03.015
- ↑ Yonezawa A, Kuwahara J, Fujii N, Sugiura Y. Binding of tachyplesin I to DNA revealed by footprinting analysis: significant contribution of secondary structure to DNA binding and implication for biological action. Biochemistry. 1992 Mar 24;31(11):2998-3004. PMID:1372516
- ↑ Lipsky A, Cohen A, Ion A, Yedidia I. Genetic transformation of Ornithogalum via particle bombardment and generation of Pectobacterium carotovorum-resistant plants. Plant Sci. 2014 Nov;228:150-8. doi: 10.1016/j.plantsci.2014.02.002. Epub 2014 Feb, 12. PMID:25438795 doi:http://dx.doi.org/10.1016/j.plantsci.2014.02.002
Proteopedia Page Contributors and Editors (what is this?)
Shulamit Idzikowski, Janak Raj Joshi, Michal Harel, Alexander Berchansky, Joel L. Sussman, Angel Herraez, Jaime Prilusky
