2j6g
From Proteopedia
Line 1: | Line 1: | ||
- | [[Image:2j6g.gif|left|200px]] | + | [[Image:2j6g.gif|left|200px]] |
- | + | ||
- | '''FAEG FROM F4AC ETEC STRAIN 5_95, PRODUCED IN TOBACCO PLANT CHLOROPLAST''' | + | {{Structure |
+ | |PDB= 2j6g |SIZE=350|CAPTION= <scene name='initialview01'>2j6g</scene>, resolution 1.55Å | ||
+ | |SITE= <scene name='pdbsite=AC1:Act+Binding+Site+For+Chain+A'>AC1</scene> | ||
+ | |LIGAND= <scene name='pdbligand=ACT:ACETATE ION'>ACT</scene> | ||
+ | |ACTIVITY= | ||
+ | |GENE= | ||
+ | }} | ||
+ | |||
+ | '''FAEG FROM F4AC ETEC STRAIN 5_95, PRODUCED IN TOBACCO PLANT CHLOROPLAST''' | ||
+ | |||
==Overview== | ==Overview== | ||
Line 7: | Line 16: | ||
==About this Structure== | ==About this Structure== | ||
- | 2J6G is a [ | + | 2J6G is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2J6G OCA]. |
==Reference== | ==Reference== | ||
- | Chloroplasts assemble the major subunit FaeG of Escherichia coli F4 (K88) fimbriae to strand-swapped dimers., Van Molle I, Joensuu JJ, Buts L, Panjikar S, Kotiaho M, Bouckaert J, Wyns L, Niklander-Teeri V, De Greve H, J Mol Biol. 2007 May 4;368(3):791-9. Epub 2007 Feb 22. PMID:[http:// | + | Chloroplasts assemble the major subunit FaeG of Escherichia coli F4 (K88) fimbriae to strand-swapped dimers., Van Molle I, Joensuu JJ, Buts L, Panjikar S, Kotiaho M, Bouckaert J, Wyns L, Niklander-Teeri V, De Greve H, J Mol Biol. 2007 May 4;368(3):791-9. Epub 2007 Feb 22. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/17368480 17368480] |
[[Category: Escherichia coli]] | [[Category: Escherichia coli]] | ||
[[Category: Single protein]] | [[Category: Single protein]] | ||
Line 30: | Line 39: | ||
[[Category: strand swapping]] | [[Category: strand swapping]] | ||
- | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu | + | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Mar 20 17:37:52 2008'' |
Revision as of 15:37, 20 March 2008
| |||||||
, resolution 1.55Å | |||||||
---|---|---|---|---|---|---|---|
Sites: | |||||||
Ligands: | |||||||
Coordinates: | save as pdb, mmCIF, xml |
FAEG FROM F4AC ETEC STRAIN 5_95, PRODUCED IN TOBACCO PLANT CHLOROPLAST
Overview
F4 fimbriae encoded by the fae operon are the major colonization factors associated with porcine neonatal and postweaning diarrhoea caused by enterotoxigenic Escherichia coli (ETEC). Via the chaperone/usher pathway, the F4 fimbriae are assembled as long polymers of the major subunit FaeG, which also possesses the adhesive properties of the fimbriae. Intrinsically, the incomplete fold of fimbrial subunits renders them unstable and susceptible to aggregation and/or proteolytic degradation in the absence of a specific periplasmic chaperone. In order to test the possibility of producing FaeG in plants, FaeG expression was studied in transgenic tobacco plants. FaeG was directed to different subcellular compartments by specific targeting signals. Targeting of FaeG to the chloroplast results in much higher yields than FaeG targeting to the endoplasmic reticulum or the apoplast. Two chloroplast-targeted FaeG variants were purified from tobacco plants and crystallized. The crystal structures show that chloroplasts circumvent the absence of the fimbrial assembly machinery by assembling FaeG into strand-swapped dimers. Furthermore, the structures reveal how FaeG combines the structural requirements of a major fimbrial subunit with its adhesive role by grafting an additional domain on its Ig-like core.
About this Structure
2J6G is a Single protein structure of sequence from Escherichia coli. Full crystallographic information is available from OCA.
Reference
Chloroplasts assemble the major subunit FaeG of Escherichia coli F4 (K88) fimbriae to strand-swapped dimers., Van Molle I, Joensuu JJ, Buts L, Panjikar S, Kotiaho M, Bouckaert J, Wyns L, Niklander-Teeri V, De Greve H, J Mol Biol. 2007 May 4;368(3):791-9. Epub 2007 Feb 22. PMID:17368480
Page seeded by OCA on Thu Mar 20 17:37:52 2008