We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.
Sandbox Reserved 965
From Proteopedia
(Difference between revisions)
| Line 10: | Line 10: | ||
In the cytoplasm, caspases are not already, constitutively present in their active form. They exist as free cytoplasmic inactive precursors called procaspases. | In the cytoplasm, caspases are not already, constitutively present in their active form. They exist as free cytoplasmic inactive precursors called procaspases. | ||
| - | Procaspase-7 is a homodimeric globular-303 amino-acids long polypeptide. This protein contains two monomers | + | Procaspase-7 is a homodimeric globular-303 amino-acids long polypeptide. This protein contains <scene name='60/604484/Two_monomers/1'>two monomers</scene>, representing two catalytic units. Each of these monomers is composed by a central 6-stranded β-sheet and 5 α-helices, forming a <scene name='60/604484/Large_subunit_of_a_monomer/2'>large (20kDa)</scene> and a <scene name='60/604484/Small_subunit_of_a_monomer/2'>small (11kDa)</scene> subunit, linked by a <scene name='60/604484/Interdomain_of_a_monomer/2'>highly flexible interdomain</scene>. The homodimerization is performed thanks to hydrophobic interactions between the 6 β-strands of each monomer. This homodimer is organized in a “open α/β barrel fold”. |
Four loops (L1 to L4), located at the two opposite ends of the β –sheet, emanate from each homodimer and define the shape of the catalytic groove of each monomer. | Four loops (L1 to L4), located at the two opposite ends of the β –sheet, emanate from each homodimer and define the shape of the catalytic groove of each monomer. | ||
Revision as of 23:42, 8 January 2015
Your Heading Here (maybe something like 'Structure')
| |||||||||||
References
- ↑ Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
- ↑ Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
