We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.
Sandbox Reserved 965
From Proteopedia
(Difference between revisions)
| Line 28: | Line 28: | ||
<scene name='60/604484/Position_of_loops_l1/4'>L1</scene> is a part of the large subunit, while <scene name='60/604484/Position_of_the_l3_loops/3'>L3</scene> and <scene name='60/604484/Position_of_l4_loops/3'>L4</scene> belong to the small subunit of each monomer. These three loops will also participate in the formation of the catalytic site. | <scene name='60/604484/Position_of_loops_l1/4'>L1</scene> is a part of the large subunit, while <scene name='60/604484/Position_of_the_l3_loops/3'>L3</scene> and <scene name='60/604484/Position_of_l4_loops/3'>L4</scene> belong to the small subunit of each monomer. These three loops will also participate in the formation of the catalytic site. | ||
| - | The 23 last amino acids of the N-ter extremity of procaspase-7 define a <scene name='60/604484/Prodomain/1'> | + | The 23 last amino acids of the N-ter extremity of procaspase-7 define a "<scene name='60/604484/Prodomain/1'>prodomain</scene>". This prodomain is apparently implicated in an inhibitory mechanism that maintains the procaspase (or caspase) catalytically inactive until it is cleaved. The mechanism by which the prodomain could inhibit caspase-7 enzymatic activity is still unclear. |
=== Maturation === | === Maturation === | ||
| Line 44: | Line 44: | ||
At the same time, a conformational change of <scene name='60/604484/L3_loops_in_the_caspase-7/1'>L3</scene> and <scene name='60/604484/L4_loops_in_the_caspase-7/1'>L4</scene> occur. L3 forms the base of the catalytic groove. L4 forms one side of the catalytic groove, rotates 60 ° and moves opposite of L3, further flattening the active site pocket. <scene name='60/604484/L1_loops_of_the_caspase-7/1'>L1</scene> constitutes the second side of this substrate-binding groove. | At the same time, a conformational change of <scene name='60/604484/L3_loops_in_the_caspase-7/1'>L3</scene> and <scene name='60/604484/L4_loops_in_the_caspase-7/1'>L4</scene> occur. L3 forms the base of the catalytic groove. L4 forms one side of the catalytic groove, rotates 60 ° and moves opposite of L3, further flattening the active site pocket. <scene name='60/604484/L1_loops_of_the_caspase-7/1'>L1</scene> constitutes the second side of this substrate-binding groove. | ||
| - | Finally, all the loops form a | + | Finally, all the loops form a "<scene name='60/604484/Bundle-loop/2'>loop-bundle</scene>", giving rise to a recognizable substrate binding site. This loop-bundle is able to interact with the substrate in the matured, active caspase-7 form. This substrate binding will then further induce a conformational switch of the caspase-7, leading to the hydrolysis of the substrate. |
Revision as of 17:08, 9 January 2015
Your Heading Here (maybe something like 'Structure')
| |||||||||||
