We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.

Sandbox Reserved 965

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 28: Line 28:
<scene name='60/604484/Position_of_loops_l1/4'>L1</scene> is a part of the large subunit, while <scene name='60/604484/Position_of_the_l3_loops/3'>L3</scene> and <scene name='60/604484/Position_of_l4_loops/3'>L4</scene> belong to the small subunit of each monomer. These three loops will also participate in the formation of the catalytic site.
<scene name='60/604484/Position_of_loops_l1/4'>L1</scene> is a part of the large subunit, while <scene name='60/604484/Position_of_the_l3_loops/3'>L3</scene> and <scene name='60/604484/Position_of_l4_loops/3'>L4</scene> belong to the small subunit of each monomer. These three loops will also participate in the formation of the catalytic site.
-
The 23 last amino acids of the N-ter extremity of procaspase-7 define a <scene name='60/604484/Prodomain/1'>"prodomain"</scene>. This prodomain is apparently implicated in an inhibitory mechanism that maintains the procaspase (or caspase) catalytically inactive until it is cleaved. The mechanism by which the prodomain could inhibit caspase-7 enzymatic activity is still unclear.
+
The 23 last amino acids of the N-ter extremity of procaspase-7 define a "<scene name='60/604484/Prodomain/1'>prodomain</scene>". This prodomain is apparently implicated in an inhibitory mechanism that maintains the procaspase (or caspase) catalytically inactive until it is cleaved. The mechanism by which the prodomain could inhibit caspase-7 enzymatic activity is still unclear.
=== Maturation ===
=== Maturation ===
Line 44: Line 44:
At the same time, a conformational change of <scene name='60/604484/L3_loops_in_the_caspase-7/1'>L3</scene> and <scene name='60/604484/L4_loops_in_the_caspase-7/1'>L4</scene> occur. L3 forms the base of the catalytic groove. L4 forms one side of the catalytic groove, rotates 60 ° and moves opposite of L3, further flattening the active site pocket. <scene name='60/604484/L1_loops_of_the_caspase-7/1'>L1</scene> constitutes the second side of this substrate-binding groove.
At the same time, a conformational change of <scene name='60/604484/L3_loops_in_the_caspase-7/1'>L3</scene> and <scene name='60/604484/L4_loops_in_the_caspase-7/1'>L4</scene> occur. L3 forms the base of the catalytic groove. L4 forms one side of the catalytic groove, rotates 60 ° and moves opposite of L3, further flattening the active site pocket. <scene name='60/604484/L1_loops_of_the_caspase-7/1'>L1</scene> constitutes the second side of this substrate-binding groove.
-
Finally, all the loops form a “loop-bundle”, giving rise to a recognizable substrate binding site. This loop-bundle is able to interact with the substrate in the matured, active caspase-7 form. This substrate binding will then further induce a conformational switch of the caspase-7, leading to the hydrolysis of the substrate.
+
Finally, all the loops form a "<scene name='60/604484/Bundle-loop/2'>loop-bundle</scene>", giving rise to a recognizable substrate binding site. This loop-bundle is able to interact with the substrate in the matured, active caspase-7 form. This substrate binding will then further induce a conformational switch of the caspase-7, leading to the hydrolysis of the substrate.

Revision as of 17:08, 9 January 2015

Your Heading Here (maybe something like 'Structure')

Structure of the active Caspase-7

Drag the structure with the mouse to rotate
Personal tools