Tachyplesin

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 46: Line 46:
<b><u> CDT Structure </u></b>
<b><u> CDT Structure </u></b>
-
CDT, like TP-1, has a β-turn in the <scene name='67/671725/Cdtturn/2'>same preserved residues</scene> in its LPS-bound structure.
+
CDT, like TP-I, has a β-turn in the <scene name='67/671725/Cdtturn/2'>same preserved residues</scene> in its LPS-bound structure.
The β-hairpin topology of CDT is sustained by the <scene name='67/671725/Cdthaipin/2'>unique packing interactions</scene> between the aromatic ring of Trp2 and the sidechain of nonpolar amino acid of Val5 and the cationic sidechain of residue Arg11.
The β-hairpin topology of CDT is sustained by the <scene name='67/671725/Cdthaipin/2'>unique packing interactions</scene> between the aromatic ring of Trp2 and the sidechain of nonpolar amino acid of Val5 and the cationic sidechain of residue Arg11.
There is a close proximity between residues <scene name='67/671725/Cdtnoe/1'>Trp2 and Ile9</scene>, supported by the [http://en.wikipedia.org/wiki/Nuclear_Overhauser_effect nuclear overhauser effects (NOEs)] involving [http://en.wikipedia.org/wiki/Indole indole] ring protons of Trp2 with sidechain proton of Ile9. These packing interactions have rendered an approximate anti-parallel orientation of the hairpin structure of CDT in presence of LPS.
There is a close proximity between residues <scene name='67/671725/Cdtnoe/1'>Trp2 and Ile9</scene>, supported by the [http://en.wikipedia.org/wiki/Nuclear_Overhauser_effect nuclear overhauser effects (NOEs)] involving [http://en.wikipedia.org/wiki/Indole indole] ring protons of Trp2 with sidechain proton of Ile9. These packing interactions have rendered an approximate anti-parallel orientation of the hairpin structure of CDT in presence of LPS.
Line 62: Line 62:
== Importance and relevance ==
== Importance and relevance ==
-
Evidences suggest that TP-1 has ability to permeabilize the cell membranes of pathogens.<ref name=Laederach>PMID:12369825</ref>. Also, LPS and DNA being the potential biological targets of the peptide, its antimicrobial activity might be exploited. Eyeing the potential of TP-1, it has been insetred successfully in genome of ''Ornithogalum dubium'' and ''Ornithogalum thyrsoides''. These ornamentals plants were originally sensitive to soft rot erwinias (SREs) and insertion of TPI in the plants has successfully protected them without affecting their normal physiology <ref name=Lipsky>PMID:25438795</ref>.
+
Evidences suggest that TP-I has ability to permeabilize the cell membranes of pathogens.<ref name=Laederach>PMID:12369825</ref>. Also, LPS and DNA being the potential biological targets of the peptide, its antimicrobial activity might be exploited. Eyeing the potential of TP-I, it has been insetred successfully in genome of ''Ornithogalum dubium'' and ''Ornithogalum thyrsoides''. These ornamentals plants were originally sensitive to soft rot erwinias (SREs) and insertion of TP-I in the plants has successfully protected them without affecting their normal physiology <ref name=Lipsky>PMID:25438795</ref>.
[http://en.wikipedia.org/wiki/Escherichia_coli <i>Escherichia coli</i>] and [http://en.wikipedia.org/wiki/Staphylococcus_aureus <i>Listeria monocytogenes</i>] are Gram-negative and Gram-positive bacteria, respectively. They are the most common intestinal tract pathogenic bacteria in animals and humans.
[http://en.wikipedia.org/wiki/Escherichia_coli <i>Escherichia coli</i>] and [http://en.wikipedia.org/wiki/Staphylococcus_aureus <i>Listeria monocytogenes</i>] are Gram-negative and Gram-positive bacteria, respectively. They are the most common intestinal tract pathogenic bacteria in animals and humans.
Studying the effect of TP-I on <i>E. coli</i> and <i>S. aureus</i> will be valuable in guiding clinical practice.
Studying the effect of TP-I on <i>E. coli</i> and <i>S. aureus</i> will be valuable in guiding clinical practice.
-
The potential mechanism of E. coli membrane disruption by TP-I is the induction of macromolecule leakage into the cytoplasm and the release of potassium ions, leading to an increase in inner permeability, the formation of a toroidal pore, the neutralization of LPS, and the disruption of the permeability barrier of the outer membrane. TP-I killed E. coli mainly through cell membrane damage and intracellular esterase inactivation dependent on concentration.
+
The potential mechanism of <i>E. coli</i> membrane disruption by TP-I is the induction of macromolecule leakage into the cytoplasm and the release of potassium ions, leading to an increase in inner permeability, the formation of a toroidal pore, the neutralization of LPS, and the disruption of the permeability barrier of the outer membrane. TP-I killed <i>E. coli</i> mainly through cell membrane damage and intracellular esterase inactivation dependent on concentration.
In food production, requirements must be met for producing high quality food with minimal microbial contamination, and the determination of microbial viability based on different physiological and metabolic parameters is critical for acceptable sterilization. Therefore, the presence of injured, metabolically active bacteria is a very important aspect to consider in food production and for clinical applications. Sublethally injured cells might be repaired under suitable conditions. If TP-I is applied as a clinical treatment at a lower concentration than the [http://en.wikipedia.org/wiki/Minimum_inhibitory_concentration MIC] over a long period of time, drug resistance could develop.<ref name=Hong>Hong, Jun, et al. "Mechanism of tachyplesin I injury to bacterial membranes and intracellular enzymes, determined by laser confocal scanning microscopy and flow cytometry." Microbiological research (2014).‏</ref>
In food production, requirements must be met for producing high quality food with minimal microbial contamination, and the determination of microbial viability based on different physiological and metabolic parameters is critical for acceptable sterilization. Therefore, the presence of injured, metabolically active bacteria is a very important aspect to consider in food production and for clinical applications. Sublethally injured cells might be repaired under suitable conditions. If TP-I is applied as a clinical treatment at a lower concentration than the [http://en.wikipedia.org/wiki/Minimum_inhibitory_concentration MIC] over a long period of time, drug resistance could develop.<ref name=Hong>Hong, Jun, et al. "Mechanism of tachyplesin I injury to bacterial membranes and intracellular enzymes, determined by laser confocal scanning microscopy and flow cytometry." Microbiological research (2014).‏</ref>

Revision as of 06:52, 19 January 2015

Introduction

1MA2

Drag the structure with the mouse to rotate

References

  1. 1.0 1.1 1.2 Laederach A, Andreotti AH, Fulton DB. Solution and micelle-bound structures of tachyplesin I and its active aromatic linear derivatives. Biochemistry. 2002 Oct 15;41(41):12359-68. PMID:12369825
  2. 2.0 2.1 Chen, Yixin, et al. "RGD-Tachyplesin inhibits tumor growth." Cancer research 61.6 (2001): 2434-2438.‏
  3. Nakamura, Takanori, et al. "Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus tridentatus). Isolation and chemical structure." Journal of Biological Chemistry 263.32 (1988): 16709-16713
  4. Kushibiki T, Kamiya M, Aizawa T, Kumaki Y, Kikukawa T, Mizuguchi M, Demura M, Kawabata SI, Kawano K. Interaction between tachyplesin I, an antimicrobial peptide derived from horseshoe crab, and lipopolysaccharide. Biochim Biophys Acta. 2014 Jan 2;1844(3):527-534. doi:, 10.1016/j.bbapap.2013.12.017. PMID:24389234 doi:http://dx.doi.org/10.1016/j.bbapap.2013.12.017
  5. 5.0 5.1 Saravanan R, Mohanram H, Joshi M, Domadia PN, Torres J, Ruedl C, Bhattacharjya S. Structure, activity and interactions of the cysteine deleted analog of tachyplesin-1 with lipopolysaccharide micelle: Mechanistic insights into outer-membrane permeabilization and endotoxin neutralization. Biochim Biophys Acta. 2012 Mar 23;1818(7):1613-1624. PMID:22464970 doi:10.1016/j.bbamem.2012.03.015
  6. 6.0 6.1 6.2 Hong, Jun, et al. "Mechanism of tachyplesin I injury to bacterial membranes and intracellular enzymes, determined by laser confocal scanning microscopy and flow cytometry." Microbiological research (2014).‏
  7. Yonezawa A, Kuwahara J, Fujii N, Sugiura Y. Binding of tachyplesin I to DNA revealed by footprinting analysis: significant contribution of secondary structure to DNA binding and implication for biological action. Biochemistry. 1992 Mar 24;31(11):2998-3004. PMID:1372516
  8. Lipsky A, Cohen A, Ion A, Yedidia I. Genetic transformation of Ornithogalum via particle bombardment and generation of Pectobacterium carotovorum-resistant plants. Plant Sci. 2014 Nov;228:150-8. doi: 10.1016/j.plantsci.2014.02.002. Epub 2014 Feb, 12. PMID:25438795 doi:http://dx.doi.org/10.1016/j.plantsci.2014.02.002

Quiz

1. TP-I is..

A Gram-negative bacteria
A Gram-positive bacteria
leukocytes of Japanese
An antimicrobial peptide

2. How many residues TP-I has?

16
14
17
15

3. What is the secondery structure of TP-I?

Two antiparallel β-sheet
Two antiparallel α-Helixes
Two parallel β-sheet
Two parallel α-Helixes

4. Which of the following derivatives is inactive?

TPF4
TPY4
TPA4
CDT

5. How many cationic residues TP-I has?

7
6
16
14

6. How many negative amino acids TP-I has?

One
Non
Two
Six

Your score is 0 / 0
Personal tools