4qib
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | ''' | + | ==Oxidation-Mediated Inhibition of the Peptidyl-Prolyl Isomerase Pin1== |
+ | <StructureSection load='4qib' size='340' side='right' caption='[[4qib]], [[Resolution|resolution]] 1.86Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[4qib]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4QIB OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4QIB FirstGlance]. <br> | ||
+ | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=PE4:2-{2-[2-(2-{2-[2-(2-ETHOXY-ETHOXY)-ETHOXY]-ETHOXY}-ETHOXY)-ETHOXY]-ETHOXY}-ETHANOL'>PE4</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | ||
+ | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CSD:3-SULFINOALANINE'>CSD</scene></td></tr> | ||
+ | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Peptidylprolyl_isomerase Peptidylprolyl isomerase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=5.2.1.8 5.2.1.8] </span></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4qib FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4qib OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4qib RCSB], [http://www.ebi.ac.uk/pdbsum/4qib PDBsum]</span></td></tr> | ||
+ | </table> | ||
+ | == Function == | ||
+ | [[http://www.uniprot.org/uniprot/PIN1_HUMAN PIN1_HUMAN]] Essential PPIase that regulates mitosis presumably by interacting with NIMA and attenuating its mitosis-promoting activity. Displays a preference for an acidic residue N-terminal to the isomerized proline bond. Catalyzes pSer/Thr-Pro cis/trans isomerizations. Down-regulates kinase activity of BTK. Can transactivate multiple oncogenes and induce centrosome amplification, chromosome instability and cell transformation. Required for the efficient dephosphorylation and recycling of RAF1 after mitogen activation.<ref>PMID:15664191</ref> <ref>PMID:16644721</ref> <ref>PMID:21497122</ref> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Pin1 is a phosphorylation-dependent peptidyl-prolyl isomerase that plays a critical role in mediating protein conformational changes involved in signaling processes related to cell cycle control. Pin1 has also been implicated as being neuroprotective in aging-related neurodegenerative disorders including Alzheimer's disease where Pin1 activity is diminished. Notably, recent proteomic analysis of brain samples from patients with mild cognitive impairment revealed that Pin1 is oxidized and also displays reduced activity. Since the Pin1 active site contains a functionally critical cysteine residue (Cys113) with a low predicted pKa, we hypothesized that Cys113 is sensitive to oxidation. Consistent with this hypothesis, we observed that treatment of Pin1 with hydrogen peroxide results in a 32Da mass increase, likely resulting from the oxidation of Cys113 to sulfinic acid (Cys-SO2H). This modification results in loss of peptidyl-prolyl isomerase activity. Notably, Pin1 with Cys113 substituted by aspartic acid retains activity and is no longer sensitive to oxidation. Structural studies by X-ray crystallography revealed increased electron density surrounding Cys113 following hydrogen peroxide treatment. At lower concentrations of hydrogen peroxide, oxidative inhibition of Pin1 can be partially reversed by treatment with dithiothreitol, suggesting that oxidation could be a reversible modification with a regulatory role. We conclude that the loss of Pin1 activity upon oxidation results from oxidative modification of the Cys113 sulfhydryl to sulfenic (Cys-SOH) or sulfinic acid (Cys-SO2H). Given the involvement of Pin1 in pathological processes related to neurodegenerative diseases and to cancer, these findings could have implications for the prevention or treatment of disease. | ||
- | + | Peroxide-mediated oxidation and inhibition of the peptidyl-prolyl isomerase Pin1.,Innes BT, Sowole MA, Gyenis L, Dubinsky M, Konermann L, Litchfield DW, Brandl CJ, Shilton BH Biochim Biophys Acta. 2015 Jan 13. pii: S0925-4439(15)00014-9. doi:, 10.1016/j.bbadis.2014.12.025. PMID:25595659<ref>PMID:25595659</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | == References == | |
- | + | <references/> | |
- | + | __TOC__ | |
- | + | </StructureSection> | |
- | [[Category: | + | [[Category: Peptidylprolyl isomerase]] |
- | [[Category: | + | [[Category: Brandl, C J]] |
- | [[Category: | + | [[Category: Innes, B T]] |
[[Category: Konermann, L]] | [[Category: Konermann, L]] | ||
+ | [[Category: Litchfield, D W]] | ||
+ | [[Category: Shilton, B H]] | ||
+ | [[Category: Sowole, M A]] | ||
+ | [[Category: Cis-trans isomerization]] | ||
+ | [[Category: Cysteine sulfenic-sulfinic acid redox regulation]] | ||
+ | [[Category: Isomerase]] | ||
+ | [[Category: Oxidation of active site cysteine]] | ||
+ | [[Category: Parvulin]] |
Revision as of 15:50, 7 February 2015
Oxidation-Mediated Inhibition of the Peptidyl-Prolyl Isomerase Pin1
|