3wv5

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 7: Line 7:
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3wv5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3wv5 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3wv5 RCSB], [http://www.ebi.ac.uk/pdbsum/3wv5 PDBsum]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3wv5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3wv5 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3wv5 RCSB], [http://www.ebi.ac.uk/pdbsum/3wv5 PDBsum]</span></td></tr>
</table>
</table>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Adenylation enzymes play important roles in the biosynthesis and degradation of primary and secondary metabolites. Mechanistic insights into the recognition of alpha-amino acid substrates have been obtained for alpha-amino acid adenylation enzymes. The Asp residue is invariant and is essential for the stabilization of the alpha-amino group of the substrate. In contrast, the beta-amino acid recognition mechanism of adenylation enzymes is still unclear despite the importance of beta-amino acid activation for the biosynthesis of various natural products. Herein, we report the crystal structure of the stand-alone adenylation enzyme VinN, which specifically activates (2S,3S)-3-methylaspartate (3-MeAsp) in vicenistatin biosynthesis. VinN has an overall structure similar to that of other adenylation enzymes. The structure of the complex with 3-MeAsp revealed that a conserved Asp(230) residue is used in the recognition of the beta-amino group of 3-MeAsp similar to alpha-amino acid adenylation enzymes. A mutational analysis and structural comparison with alpha-amino acid adenylation enzymes showed that the substrate-binding pocket of VinN has a unique architecture to accommodate 3-MeAsp as a beta-amino acid substrate. Thus, the VinN structure allows the first visualization of the interaction of an adenylation enzyme with a beta-amino acid and provides new mechanistic insights into the selective recognition of beta-amino acids in this family of enzymes.
 +
 +
The crystal structure of the adenylation enzyme VinN reveals a unique beta-amino acid recognition mechanism.,Miyanaga A, Cieslak J, Shinohara Y, Kudo F, Eguchi T J Biol Chem. 2014 Nov 7;289(45):31448-57. doi: 10.1074/jbc.M114.602326. Epub 2014, Sep 22. PMID:25246523<ref>PMID:25246523</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Revision as of 06:04, 12 February 2015

Complex structure of VinN with 3-methylaspartate

3wv5, resolution 2.20Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools