4nwj
From Proteopedia
(Difference between revisions)
Line 10: | Line 10: | ||
== Function == | == Function == | ||
[[http://www.uniprot.org/uniprot/Q2G029_STAA8 Q2G029_STAA8]] Catalyzes the interconversion of 2-phosphoglycerate and 3-phosphoglycerate (By similarity).[HAMAP-Rule:MF_01038][SAAS:SAAS011258_004_004839] | [[http://www.uniprot.org/uniprot/Q2G029_STAA8 Q2G029_STAA8]] Catalyzes the interconversion of 2-phosphoglycerate and 3-phosphoglycerate (By similarity).[HAMAP-Rule:MF_01038][SAAS:SAAS011258_004_004839] | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Cofactor-independent phosphoglycerate mutase (iPGM), an important enzyme in glycolysis and gluconeogenesis, catalyses the isomerization of 2- and 3-phosphoglycerates by an Mn2+ -dependent phospho-transfer mechanism via a phospho-enzyme intermediate. Crystal structures of bi-domain iPGM from Staphylococcus aureus, together with substrate-bound forms, have revealed a new conformation of the enzyme, representing an intermediate state of domain movement. The substrate-binding site and the catalytic site are present in two distinct domains in the intermediate form. X-ray crystallography complemented by simulated dynamics has enabled delineation of the complete catalytic cycle, which includes binding of the substrate, followed by its positioning into the catalytic site, phospho-transfer and finally product release. The present work describes a novel mechanism of domain movement controlled by a hydrophobic patch that is exposed on domain closure and acts like a spring to keep the protein in open conformation. Domain closing occurs after substrate binding, and is essential for phospho-transfer, whereas the open conformation is a prerequisite for efficient substrate binding and product dissociation. A new model of catalysis has been proposed by correlating the hinge-bending motion with the phospho-transfer mechanism. | ||
+ | |||
+ | Complete catalytic cycle of cofactor-independent phosphoglycerate mutase involves a spring-loaded mechanism.,Roychowdhury A, Kundu A, Bose M, Gujar A, Mukherjee S, Das AK FEBS J. 2015 Jan 22. doi: 10.1111/febs.13205. PMID:25611430<ref>PMID:25611430</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | == References == | ||
+ | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Revision as of 06:33, 12 February 2015
Crystal structure of phosphopglycerate mutase from Staphylococcus aureus in 3-phosphoglyceric acid bound form.
|
Categories: Bose, M | Das, A K | Gujar, A | Kundu, A | Roychowdhury, A | Cytosol | Glycolytic enzyme | Isomerase