4pw2

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 7: Line 7:
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4pw2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4pw2 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4pw2 RCSB], [http://www.ebi.ac.uk/pdbsum/4pw2 PDBsum]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4pw2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4pw2 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4pw2 RCSB], [http://www.ebi.ac.uk/pdbsum/4pw2 PDBsum]</span></td></tr>
</table>
</table>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Heparan sulfate (HS) is a glycosaminoglycan present on the cell surface and in the extracellular matrix which interacts with diverse signal molecules and is essential for many physiological processes including embryonic development, cell growth, inflammation, and blood coagulation. D-glucuronyl C5-epimerase (Glce) is a crucial enzyme in HS synthesis, converting D-glucuronic acid (GlcA) to L-iduronic acid (IdoA) to increase HS flexibility. This modification of HS is important for protein ligand recognition. We have determined the crystal structures of Glce in apo form (unliganded) and in complex with heparin hexasaccharide (product of Glce following O-sulfation), both in a stable dimer conformation. A Glce dimer contains two catalytic sites, each at a positively charged cleft in C-terminal alpha-helical domains binding one negatively charged hexasaccharide. Based on the structural and mutagenesis studies, three tyrosine residues, Y468, Y528, and Y546 in the active site were found to be crucial for the enzymatic activity. The complex structure also reveals the mechanism of product inhibition, i.e. 2-O- and 6-O-sulfation of HS keeps the C5 carbon of IdoA away from the active-site tyrosine residues. Our structural and functional data advance understanding of the key modification regulation in HS biosynthesis.
 +
 +
Structural and functional study of D-glucuronyl C5-epimerase.,Qin Y, Ke J, Gu X, Fang J, Wang W, Cong Q, Li J, Tan J, Brunzelle JS, Zhang C, Jiang Y, Melcher K, Li JP, Xu HE, Ding K J Biol Chem. 2015 Jan 7. pii: jbc.M114.602201. PMID:25568314<ref>PMID:25568314</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Revision as of 08:10, 25 February 2015

Crystal structure of D-glucuronyl C5 epimerase

4pw2, resolution 1.90Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools