3wqe

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 8: Line 8:
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3wqe FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3wqe OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3wqe RCSB], [http://www.ebi.ac.uk/pdbsum/3wqe PDBsum]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3wqe FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3wqe OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3wqe RCSB], [http://www.ebi.ac.uk/pdbsum/3wqe PDBsum]</span></td></tr>
</table>
</table>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
D-threo-3-Hydroxyaspartate dehydratase (D-THA DH) is a fold-type III pyridoxal 5'-phosphate-dependent enzyme, isolated from a soil bacterium of Delftia sp. HT23. It catalyzes the dehydration of D-threo-3-hydroxyaspartate (D-THA) and L-erythro-3-hydroxyaspartate (L-EHA). To elucidate the mechanism of substrate stereospecificity, crystal structures of D-THA DH were determined in complex with various ligands, such as an inhibitor (D-erythro-3-hydroxyaspartate (D-EHA)), a substrate (L-EHA), and the reaction intermediate (2-amino maleic acid). The C beta -OH of L-EHA occupied a position close to the active-site Mg2+, clearly indicating a possibility of metal-assisted C beta -OH elimination from the substrate. In contrast, the C beta -OH of an inhibitor was bound far from the active-site Mg2+. This suggests that the substrate specificity of D-THA DH is determined by the orientation of the C beta -OH at the active site, whose spatial arrangement is compatible with the 3R configuration of 3-hydroxyaspartate. We also report an optically pure synthesis of L-threo-3-hydroxyaspartate (L-THA) and D-EHA, promising intermediates for the synthesis of beta-benzyloxyaspartate, by using a purified D-THA DH as a biocatalyst for the resolution of racemic DL-threo-3-hydroxyaspartate (DL-THA) and DL-erythro-3-hydroxyaspartate (DL-EHA). Considering 50 % of the theoretical maximum, efficient yields of L-THA (38.9 %) and D-EHA (48.9 %) as isolated crystals were achieved with &gt;99 % enantiomeric excess (e.e.). The results of nuclear magnetic resonance signals verified the chemical purity of the products. We were directly able to isolate analytically pure compounds by the recrystallization of acidified reaction mixtures (pH 2.0) and thus avoiding the use of environmentally harmful organic solvents for the chromatographic purification.
 +
 +
Structural insights into the substrate stereospecificity of D-threo-3-hydroxyaspartate dehydratase from Delftia sp. HT23: a useful enzyme for the synthesis of optically pure L-threo- and D-erythro-3-hydroxyaspartate.,Matsumoto Y, Yasutake Y, Takeda Y, Tamura T, Yokota A, Wada M Appl Microbiol Biotechnol. 2015 Feb 26. PMID:25715785<ref>PMID:25715785</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Revision as of 05:52, 11 March 2015

D-threo-3-hydroxyaspartate dehydratase from Delftia sp. HT23 complexed with D-allothreonine

3wqe, resolution 1.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools