4rcn

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 5: Line 5:
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4rcn FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4rcn OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4rcn RCSB], [http://www.ebi.ac.uk/pdbsum/4rcn PDBsum]</span></td></tr>
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4rcn FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4rcn OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4rcn RCSB], [http://www.ebi.ac.uk/pdbsum/4rcn PDBsum]</span></td></tr>
</table>
</table>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Biotin-dependent carboxylases are widely distributed in nature and have important functions in the metabolism of fatty acids, amino acids, carbohydrates, cholesterol and other compounds. Defective mutations in several of these enzymes have been linked to serious metabolic diseases in humans, and acetyl-CoA carboxylase is a target for drug discovery in the treatment of diabetes, cancer and other diseases. Here we report the identification and biochemical, structural and functional characterizations of a novel single-chain (120 kDa), multi-domain biotin-dependent carboxylase in bacteria. It has preference for long-chain acyl-CoA substrates, although it is also active towards short-chain and medium-chain acyl-CoAs, and we have named it long-chain acyl-CoA carboxylase. The holoenzyme is a homo-hexamer with molecular mass of 720 kDa. The 3.0 A crystal structure of the long-chain acyl-CoA carboxylase holoenzyme from Mycobacterium avium subspecies paratuberculosis revealed an architecture that is strikingly different from those of related biotin-dependent carboxylases. In addition, the domains of each monomer have no direct contact with each other. They are instead extensively swapped in the holoenzyme, such that one cycle of catalysis involves the participation of four monomers. Functional studies in Pseudomonas aeruginosa suggest that the enzyme is involved in the utilization of selected carbon and nitrogen sources.
 +
 +
Structure and function of a single-chain, multi-domain long-chain acyl-CoA carboxylase.,Tran TH, Hsiao YS, Jo J, Chou CY, Dietrich LE, Walz T, Tong L Nature. 2015 Feb 5;518(7537):120-4. doi: 10.1038/nature13912. Epub 2014 Nov 10. PMID:25383525<ref>PMID:25383525</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Revision as of 06:00, 11 March 2015

Structure and function of a single-chain, multi-domain long-chain acyl-coa carboxylase

4rcn, resolution 3.01Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools