2mzd
From Proteopedia
(Difference between revisions)
m (Protected "2mzd" [edit=sysop:move=sysop]) |
|||
| Line 1: | Line 1: | ||
| - | ''' | + | ==Characterization of the p300 Taz2-p53 TAD2 Complex and Comparison with the p300 Taz2-p53 TAD1 Complex== |
| + | <StructureSection load='2mzd' size='340' side='right' caption='[[2mzd]], [[NMR_Ensembles_of_Models | 15 NMR models]]' scene=''> | ||
| + | == Structural highlights == | ||
| + | <table><tr><td colspan='2'>[[2mzd]] is a 2 chain structure. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2MZD OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2MZD FirstGlance]. <br> | ||
| + | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2k8f|2k8f]]</td></tr> | ||
| + | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Histone_acetyltransferase Histone acetyltransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.3.1.48 2.3.1.48] </span></td></tr> | ||
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2mzd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2mzd OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2mzd RCSB], [http://www.ebi.ac.uk/pdbsum/2mzd PDBsum]</span></td></tr> | ||
| + | </table> | ||
| + | == Disease == | ||
| + | [[http://www.uniprot.org/uniprot/EP300_HUMAN EP300_HUMAN]] Note=Defects in EP300 may play a role in epithelial cancer. Note=Chromosomal aberrations involving EP300 may be a cause of acute myeloid leukemias. Translocation t(8;22)(p11;q13) with KAT6A. Defects in EP300 are the cause of Rubinstein-Taybi syndrome type 2 (RSTS2) [MIM:[http://omim.org/entry/613684 613684]]. A disorder characterized by craniofacial abnormalities, postnatal growth deficiency, broad thumbs, broad big toes, mental retardation and a propensity for development of malignancies. Some individuals with RSTS2 have less severe mental impairment, more severe microcephaly, and a greater degree of changes in facial bone structure than RSTS1 patients.<ref>PMID:15706485</ref> [[http://www.uniprot.org/uniprot/P53_HUMAN P53_HUMAN]] Note=TP53 is found in increased amounts in a wide variety of transformed cells. TP53 is frequently mutated or inactivated in about 60% of cancers. TP53 defects are found in Barrett metaplasia a condition in which the normally stratified squamous epithelium of the lower esophagus is replaced by a metaplastic columnar epithelium. The condition develops as a complication in approximately 10% of patients with chronic gastroesophageal reflux disease and predisposes to the development of esophageal adenocarcinoma. Defects in TP53 are a cause of esophageal cancer (ESCR) [MIM:[http://omim.org/entry/133239 133239]]. Defects in TP53 are a cause of Li-Fraumeni syndrome (LFS) [MIM:[http://omim.org/entry/151623 151623]]. LFS is an autosomal dominant familial cancer syndrome that in its classic form is defined by the existence of a proband affected by a sarcoma before 45 years with a first degree relative affected by any tumor before 45 years and another first degree relative with any tumor before 45 years or a sarcoma at any age. Other clinical definitions for LFS have been proposed (PubMed:8118819 and PubMed:8718514) and called Li-Fraumeni like syndrome (LFL). In these families affected relatives develop a diverse set of malignancies at unusually early ages. Four types of cancers account for 80% of tumors occurring in TP53 germline mutation carriers: breast cancers, soft tissue and bone sarcomas, brain tumors (astrocytomas) and adrenocortical carcinomas. Less frequent tumors include choroid plexus carcinoma or papilloma before the age of 15, rhabdomyosarcoma before the age of 5, leukemia, Wilms tumor, malignant phyllodes tumor, colorectal and gastric cancers.<ref>PMID:10570149</ref> <ref>PMID:1933902</ref> <ref>PMID:1978757</ref> <ref>PMID:2259385</ref> <ref>PMID:1737852</ref> <ref>PMID:1565144</ref> <ref>PMID:7887414</ref> <ref>PMID:8825920</ref> <ref>PMID:9452042</ref> <ref>PMID:10484981</ref> Defects in TP53 are involved in head and neck squamous cell carcinomas (HNSCC) [MIM:[http://omim.org/entry/275355 275355]]; also known as squamous cell carcinoma of the head and neck. Defects in TP53 are a cause of lung cancer (LNCR) [MIM:[http://omim.org/entry/211980 211980]]. LNCR is a common malignancy affecting tissues of the lung. The most common form of lung cancer is non-small cell lung cancer (NSCLC) that can be divided into 3 major histologic subtypes: squamous cell carcinoma, adenocarcinoma, and large cell lung cancer. NSCLC is often diagnosed at an advanced stage and has a poor prognosis. Defects in TP53 are a cause of choroid plexus papilloma (CPLPA) [MIM:[http://omim.org/entry/260500 260500]]. Choroid plexus papilloma is a slow-growing benign tumor of the choroid plexus that often invades the leptomeninges. In children it is usually in a lateral ventricle but in adults it is more often in the fourth ventricle. Hydrocephalus is common, either from obstruction or from tumor secretion of cerebrospinal fluid. If it undergoes malignant transformation it is called a choroid plexus carcinoma. Primary choroid plexus tumors are rare and usually occur in early childhood.<ref>PMID:12085209</ref> Defects in TP53 are a cause of adrenocortical carcinoma (ADCC) [MIM:[http://omim.org/entry/202300 202300]]. ADCC is a rare childhood tumor of the adrenal cortex. It occurs with increased frequency in patients with the Beckwith-Wiedemann syndrome and is a component tumor in Li-Fraumeni syndrome.<ref>PMID:11481490</ref> Defects in TP53 are the cause of susceptibility to basal cell carcinoma 7 (BCC7) [MIM:[http://omim.org/entry/614740 614740]]. A common malignant skin neoplasm that typically appears on hair-bearing skin, most commonly on sun-exposed areas. It is slow growing and rarely metastasizes, but has potentialities for local invasion and destruction. It usually develops as a flat, firm, pale area that is small, raised, pink or red, translucent, shiny, and waxy, and the area may bleed following minor injury. Tumor size can vary from a few millimeters to several centimeters in diameter.<ref>PMID:21946351</ref> | ||
| + | == Function == | ||
| + | [[http://www.uniprot.org/uniprot/EP300_HUMAN EP300_HUMAN]] Functions as histone acetyltransferase and regulates transcription via chromatin remodeling. Acetylates all four core histones in nucleosomes. Histone acetylation gives an epigenetic tag for transcriptional activation. Mediates cAMP-gene regulation by binding specifically to phosphorylated CREB protein. Also functions as acetyltransferase for nonhistone targets. Acetylates 'Lys-131' of ALX1 and acts as its coactivator in the presence of CREBBP. Acetylates SIRT2 and is proposed to indirectly increase the transcriptional activity of TP53 through acetylation and subsequent attenuation of SIRT2 deacetylase function. Acetylates HDAC1 leading to its inactivation and modulation of transcription. Acts as a TFAP2A-mediated transcriptional coactivator in presence of CITED2. Plays a role as a coactivator of NEUROD1-dependent transcription of the secretin and p21 genes and controls terminal differentiation of cells in the intestinal epithelium. Promotes cardiac myocyte enlargement. Can also mediate transcriptional repression. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes. Acetylates FOXO1 and enhances its transcriptional activity.<ref>PMID:11701890</ref> <ref>PMID:10733570</ref> <ref>PMID:11430825</ref> <ref>PMID:12586840</ref> <ref>PMID:12929931</ref> <ref>PMID:15186775</ref> <ref>PMID:15890677</ref> <ref>PMID:16762839</ref> <ref>PMID:18722353</ref> [[http://www.uniprot.org/uniprot/P53_HUMAN P53_HUMAN]] Acts as a tumor suppressor in many tumor types; induces growth arrest or apoptosis depending on the physiological circumstances and cell type. Involved in cell cycle regulation as a trans-activator that acts to negatively regulate cell division by controlling a set of genes required for this process. One of the activated genes is an inhibitor of cyclin-dependent kinases. Apoptosis induction seems to be mediated either by stimulation of BAX and FAS antigen expression, or by repression of Bcl-2 expression. In cooperation with mitochondrial PPIF is involved in activating oxidative stress-induced necrosis; te function is largely independent of transcription. Induces the transcription of long intergenic non-coding RNA p21 (lincRNA-p21) and lincRNA-Mkln1. LincRNA-p21 participates in TP53-dependent transcriptional repression leading to apoptosis and seem to have to effect on cell-cycle regulation. Implicated in Notch signaling cross-over. Prevents CDK7 kinase activity when associated to CAK complex in response to DNA damage, thus stopping cell cycle progression. Isoform 2 enhances the transactivation activity of isoform 1 from some but not all TP53-inducible promoters. Isoform 4 suppresses transactivation activity and impairs growth suppression mediated by isoform 1. Isoform 7 inhibits isoform 1-mediated apoptosis.<ref>PMID:9840937</ref> <ref>PMID:11025664</ref> <ref>PMID:12810724</ref> <ref>PMID:15186775</ref> <ref>PMID:15340061</ref> <ref>PMID:17317671</ref> <ref>PMID:17349958</ref> <ref>PMID:19556538</ref> <ref>PMID:20673990</ref> <ref>PMID:20959462</ref> <ref>PMID:22726440</ref> | ||
| + | <div style="background-color:#fffaf0;"> | ||
| + | == Publication Abstract from PubMed == | ||
| + | The p53 tumor suppressor is a critical mediator of the cellular response to stress. The N-terminal transactivation domain of p53 makes protein interactions that promote its function as a transcription factor. Among those cofactors is the histone acetyltransferase p300, which both stabilizes p53 and promotes local chromatin unwinding. Here, we report the nuclear magnetic resonance solution structure of the Taz2 domain of p300 bound to the second transactivation subdomain of p53. In the complex, p53 forms an alpha-helix between residues 47 and 55 that interacts with the alpha1-alpha2-alpha3 face of Taz2. Mutational analysis indicated several residues in both p53 and Taz2 that are critical for stabilizing the interaction. Finally, further characterization of the complex by isothermal titration calorimetry revealed that complex formation is pH-dependent and releases a bound chloride ion. This study highlights differences in the structures of complexes formed by the two transactivation subdomains of p53 that may be broadly observed and play critical roles in p53 transcriptional activity. | ||
| - | + | Characterization of the p300 Taz2-p53 TAD2 Complex and Comparison with the p300 Taz2-p53 TAD1 Complex.,Miller Jenkins LM, Feng H, Durell SR, Tagad HD, Mazur SJ, Tropea JE, Bai Y, Appella E Biochemistry. 2015 Mar 24;54(11):2001-10. doi: 10.1021/acs.biochem.5b00044. Epub , 2015 Mar 16. PMID:25753752<ref>PMID:25753752</ref> | |
| - | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
| - | + | </div> | |
| - | + | == References == | |
| - | [[Category: | + | <references/> |
| + | __TOC__ | ||
| + | </StructureSection> | ||
| + | [[Category: Histone acetyltransferase]] | ||
| + | [[Category: Appella, E]] | ||
[[Category: Bai, Y]] | [[Category: Bai, Y]] | ||
| - | [[Category: | + | [[Category: Durell, S R]] |
[[Category: Feng, H]] | [[Category: Feng, H]] | ||
| - | [[Category: | + | [[Category: Jenkins, L M.Miller]] |
| - | [[Category: | + | [[Category: Mazur, S J]] |
| - | [[Category: | + | [[Category: Tagad, H D]] |
| - | [[Category: | + | [[Category: Tropea, J E]] |
| - | [[Category: | + | [[Category: Protein binding]] |
Revision as of 13:56, 26 March 2015
Characterization of the p300 Taz2-p53 TAD2 Complex and Comparison with the p300 Taz2-p53 TAD1 Complex
| |||||||||||
