4tm6

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
-
'''Unreleased structure'''
+
==Crystal Structure of EutL from Clostridium Perfringens at 298K==
 +
<StructureSection load='4tm6' size='340' side='right' caption='[[4tm6]], [[Resolution|resolution]] 1.90&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[4tm6]] is a 3 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4TM6 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4TM6 FirstGlance]. <br>
 +
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=NA:SODIUM+ION'>NA</scene></td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4tm6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4tm6 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4tm6 RCSB], [http://www.ebi.ac.uk/pdbsum/4tm6 PDBsum]</span></td></tr>
 +
</table>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
The ethanolamine utilization (Eut) microcompartment is a protein-based metabolic organelle that is strongly associated with pathogenesis in bacteria that inhabit the human gut. The exterior shell of this elaborate protein complex is composed from a few thousand copies of BMC-domain shell proteins, which form a semi-permeable diffusion barrier that provides the interior enzymes with substrates and cofactors while simultaneously retaining metabolic intermediates. The ability of this protein shell to regulate passage of substrate and cofactor molecules is critical for microcompartment function, but the details of how this diffusion barrier can allow the passage of large cofactors while still retaining small intermediates remain unclear. Previous work has revealed two conformations of the EutL shell protein, providing substantial evidence for a gated pore that might allow the passage of large cofactors. Here we report structural and biophysical evidence to show that ethanolamine, the substrate of the Eut microcompartment, acts as a negative allosteric regulator of EutL pore opening. Specifically, a series of X-ray crystal structures of EutL from Clostridium perfringens, along with equilibrium binding studies, reveal that ethanolamine binds to EutL at a site that exists in the closed-pore conformation and which is incompatible with opening of the large pore for cofactor transport. The allosteric mechanism we propose is consistent with the cofactor requirements of the Eut microcompartment, leading to a new model for EutL function. Furthermore, our results suggest the possibility of redox modulation of the allosteric mechanism, opening potentially new lines of investigation. This article is protected by copyright. All rights reserved.
-
The entry 4tm6 is ON HOLD until Paper Publication
+
An allosteric model for control of pore opening by substrate binding in the eutl microcompartment shell protein.,Thompson MC, Cascio D, Leibly DJ, Yeates TO Protein Sci. 2015 Mar 9. doi: 10.1002/pro.2672. PMID:25752492<ref>PMID:25752492</ref>
-
Authors: Thompson, M.C., Cascio, D., Yeates, T.O.
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
 
+
</div>
-
Description: Crystal Structure of EutL from Clostridium Perfringens at 298K
+
== References ==
-
[[Category: Unreleased Structures]]
+
<references/>
-
[[Category: Thompson, M.C]]
+
__TOC__
-
[[Category: Yeates, T.O]]
+
</StructureSection>
[[Category: Cascio, D]]
[[Category: Cascio, D]]
 +
[[Category: Thompson, M C]]
 +
[[Category: Yeates, T O]]
 +
[[Category: Bacterial microcompartment]]
 +
[[Category: Bmc shell protein]]
 +
[[Category: Ethanolamine]]
 +
[[Category: Eut]]
 +
[[Category: Room temperature crystallography]]
 +
[[Category: Transport protein]]

Revision as of 13:56, 26 March 2015

Crystal Structure of EutL from Clostridium Perfringens at 298K

4tm6, resolution 1.90Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools