Sandbox Reserved 1066

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 13: Line 13:
= Mechanism =
= Mechanism =
[[Image:FadD13 edited image.jpg|425 px|left|thumb|Figure 1: Mechanism for the activation of fatty acids (C24-C26) by FadD13. The N terminal domain (pink) is embedded in the membrane with the arginine rich lid-loop (dark blue), while the flexile linker (black) connects the C terminal domain (green) to the rest of the enzyme. Activation requires the binding of ATP (blue) which induces structural changes that promote the binding of the fatty acid chain. Formation of an acyl-adenylate intermediate induces a 140° rotation of the C terminal domain and the binding of CoA (orange). ]]
[[Image:FadD13 edited image.jpg|425 px|left|thumb|Figure 1: Mechanism for the activation of fatty acids (C24-C26) by FadD13. The N terminal domain (pink) is embedded in the membrane with the arginine rich lid-loop (dark blue), while the flexile linker (black) connects the C terminal domain (green) to the rest of the enzyme. Activation requires the binding of ATP (blue) which induces structural changes that promote the binding of the fatty acid chain. Formation of an acyl-adenylate intermediate induces a 140° rotation of the C terminal domain and the binding of CoA (orange). ]]
 +
 +
<scene name='69/694233/Lys_487/2'>Lys 487</scene> results in a 95% loss of function of FadD13. <ref name="Our Paper">PMID: PMC2793005</ref>
[[Image:acyl coa synthetase.jpg|425 px|left|thumb|Figure 2: Representation of the two-step reaction catalyzed by FadD13]]
[[Image:acyl coa synthetase.jpg|425 px|left|thumb|Figure 2: Representation of the two-step reaction catalyzed by FadD13]]
Line 40: Line 42:
== Active Site ==
== Active Site ==
The active site on FadD13 is composed of two conserved regions, one of which serves as the binding site for ATP and the other for CoA. The adenine of ATP is bound to a group of <scene name='69/694232/Adenine_binding_group/2'>six amino acids (300-305)</scene> that is structurally identically to other acyl-CoA synthetases. <ref name="Our Paper"/>
The active site on FadD13 is composed of two conserved regions, one of which serves as the binding site for ATP and the other for CoA. The adenine of ATP is bound to a group of <scene name='69/694232/Adenine_binding_group/2'>six amino acids (300-305)</scene> that is structurally identically to other acyl-CoA synthetases. <ref name="Our Paper"/>
 +
 +
= Disease =
= Disease =

Revision as of 00:55, 9 April 2015

This Sandbox is Reserved from 02/09/2015, through 05/31/2016 for use in the course "CH462: Biochemistry 2" taught by Geoffrey C. Hoops at the Butler University. This reservation includes Sandbox Reserved 1051 through Sandbox Reserved 1080.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • Click the 3D button (when editing, above the wikitext box) to insert Jmol.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

Mycobacterium tuberculosis very-long-chain fatty acyl-CoA synthetase

Very Long Chain Fatty Acyl CoA Synthetase (FadD13)

Drag the structure with the mouse to rotate


References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 Andersson CS, Lundgren CA, Magnusdottir A, Ge C, Wieslander A, Molina DM, Hogbom M. The Mycobacterium tuberculosis Very-Long-Chain Fatty Acyl-CoA Synthetase: Structural Basis for Housing Lipid Substrates Longer than the Enzyme. Structure. 2012 May 2. PMID:22560731 doi:10.1016/j.str.2012.03.012
  2. Jatana N, Jangid S, Khare G, Tyagi AK, Latha N. Molecular modeling studies of Fatty acyl-CoA synthetase (FadD13) from Mycobacterium tuberculosis--a potential target for the development of antitubercular drugs. J Mol Model. 2011 Feb;17(2):301-13. doi: 10.1007/s00894-010-0727-3. Epub 2010 May, 8. PMID:20454815 doi:http://dx.doi.org/10.1007/s00894-010-0727-3

Similar Proteopedia Pages

Thioesterase Do we have anything like this?


External Resources

Tuberculosis Wikipedia page

Mycobacterium tuberculosis Wikipedia page

Coenzyme A Wikipedia page

Acyl CoA  Wikipedia Page

Mycolic Acid Wikipedia page

Personal tools