Ferredoxin NADP+ Reductase

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 6: Line 6:
ferredoxin NADP+ reductase [http://en.wikipedia.org/wiki/Ferredoxin—NADP(%2B)_reductase] is an enzyme that catalyzes the reduction of NADP+ to NADPH. This enzyme belongs to a family of enzymes called oxidoreductases (link to Wiki) that contain iron-sulfur proteins as electron donors and NAD+ or NADP+ as electron acceptors. FAD, [flavin adenine dinucleotide][http://en.wikipedia.org/wiki/Flavin_adenine_dinucleotide], is also a cofactor of FNR. The ferredoxin NADP+ reductase participates in a general reaction that proceeds as follows:
ferredoxin NADP+ reductase [http://en.wikipedia.org/wiki/Ferredoxin—NADP(%2B)_reductase] is an enzyme that catalyzes the reduction of NADP+ to NADPH. This enzyme belongs to a family of enzymes called oxidoreductases (link to Wiki) that contain iron-sulfur proteins as electron donors and NAD+ or NADP+ as electron acceptors. FAD, [flavin adenine dinucleotide][http://en.wikipedia.org/wiki/Flavin_adenine_dinucleotide], is also a cofactor of FNR. The ferredoxin NADP+ reductase participates in a general reaction that proceeds as follows:
-
2 reduced ferredoxin + NADP+ + H+ 2 oxidized ferredoxin + NADPH
+
2 reduced ferredoxin + NADP+ H + 2 oxidized ferredoxin + NADPH
== Anaerobic Function ==
== Anaerobic Function ==
Line 26: Line 26:
</StructureSection>
</StructureSection>
== References ==
== References ==
-
<references/>
+
 
 +
Constantinidou, Chrystala, Jon L. Hobman, Lesley Griffiths, Mala D. Patel, Charles W. Penn, Jeffrey A. Cole, and Tim W. Overton. “A Reassessment of the FNR Regulon and Transcriptomic Analysis of the Effects of Nitrate, Nitrite, NarXL, and NarQP as Escherichia Coli K12 Adapts from Aerobic to Anaerobic Growth.” Journal of Biological Chemistry 281, no. 8 (February 24, 2006): 4802–15. doi:10.1074/jbc.M512312200.
 +
 
 +
Tolla, Dean A., and Michael A. Savageau. “Phenotypic Repertoire of the FNR Regulatory Network in Escherichia Coli.” Molecular Microbiology 79, no. 1 (January 2011): 149–65. doi:10.1111/j.1365-2958.2010.07437.x.
 +
 
 +
Unden, G., S. Becker, J. Bongaerts, J. Schirawski, and S. Six. “Oxygen Regulated Gene Expression in Facultatively Anaerobic Bacteria.” Antonie Van Leeuwenhoek 66, no. 1–3 (1994): 3–22.
 +
 
 +
Unden, G., and A. Duchene. “On the Role of Cyclic AMP and the Fnr Protein in Escherichia Coli Growing Anaerobically.” Archives of Microbiology 147, no. 2 (March 1987): 195–200.

Revision as of 14:53, 14 April 2015

Overview

Caption for this structure

Drag the structure with the mouse to rotate

References

Constantinidou, Chrystala, Jon L. Hobman, Lesley Griffiths, Mala D. Patel, Charles W. Penn, Jeffrey A. Cole, and Tim W. Overton. “A Reassessment of the FNR Regulon and Transcriptomic Analysis of the Effects of Nitrate, Nitrite, NarXL, and NarQP as Escherichia Coli K12 Adapts from Aerobic to Anaerobic Growth.” Journal of Biological Chemistry 281, no. 8 (February 24, 2006): 4802–15. doi:10.1074/jbc.M512312200.

Tolla, Dean A., and Michael A. Savageau. “Phenotypic Repertoire of the FNR Regulatory Network in Escherichia Coli.” Molecular Microbiology 79, no. 1 (January 2011): 149–65. doi:10.1111/j.1365-2958.2010.07437.x.

Unden, G., S. Becker, J. Bongaerts, J. Schirawski, and S. Six. “Oxygen Regulated Gene Expression in Facultatively Anaerobic Bacteria.” Antonie Van Leeuwenhoek 66, no. 1–3 (1994): 3–22.

Unden, G., and A. Duchene. “On the Role of Cyclic AMP and the Fnr Protein in Escherichia Coli Growing Anaerobically.” Archives of Microbiology 147, no. 2 (March 1987): 195–200.

Personal tools