Sandbox PgpWWC

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 3: Line 3:
'''P-glycoprotein (P-gp, ABCB1)''' is an ATP binding casette transporter that hydrolyses ATP for conformational changes after a variety of substrates are transported. It is one of the membrane proteins responsible for the multi drug resistance (MDR) in cancer treatment, as well as various other drug therapies.<ref>Aller, S., Yu, J., Ward, A., Weng, Y., Chittaboina, S., Zhuo, R., . . . Chang, G. (2009). Structure of P-Glycoprotein Reveals a Molecular Basis for Poly-Specific Drug Binding. Science, 323(5922), 1718-1722.</ref><ref>He, L., & Liu, G. Q. (2002). Effects of various principles from Chinese herbal medicine on rhodamine123 accumulation in brain capillary endothelial cells. Acta Pharmacologica Sinica, 23(7), 591-596</ref> P-gp can be found in tumor cells, as well as in the liver, kidney, adrenal gland, intestine, blood-brain barrier (BBB), placenta, blood-testis barrier, and blood-ovarian barriers. An effective MDR transport protein, the high amount of active Pgp substrates stems from the polyspecificity for hydrophobic and aromatic compounds.<ref>Marchetti, S., Mazzanti, R., Beijnen, J. H., & Schellens, J. H. (2007). Concise review: clinical relevance of drug–drug and herb–drug interactions mediated by the ABC transporter ABCB1 (MDR1, P-glycoprotein). The Oncologist, 12(8), 927-941.</ref>
'''P-glycoprotein (P-gp, ABCB1)''' is an ATP binding casette transporter that hydrolyses ATP for conformational changes after a variety of substrates are transported. It is one of the membrane proteins responsible for the multi drug resistance (MDR) in cancer treatment, as well as various other drug therapies.<ref>Aller, S., Yu, J., Ward, A., Weng, Y., Chittaboina, S., Zhuo, R., . . . Chang, G. (2009). Structure of P-Glycoprotein Reveals a Molecular Basis for Poly-Specific Drug Binding. Science, 323(5922), 1718-1722.</ref><ref>He, L., & Liu, G. Q. (2002). Effects of various principles from Chinese herbal medicine on rhodamine123 accumulation in brain capillary endothelial cells. Acta Pharmacologica Sinica, 23(7), 591-596</ref> P-gp can be found in tumor cells, as well as in the liver, kidney, adrenal gland, intestine, blood-brain barrier (BBB), placenta, blood-testis barrier, and blood-ovarian barriers. An effective MDR transport protein, the high amount of active Pgp substrates stems from the polyspecificity for hydrophobic and aromatic compounds.<ref>Marchetti, S., Mazzanti, R., Beijnen, J. H., & Schellens, J. H. (2007). Concise review: clinical relevance of drug–drug and herb–drug interactions mediated by the ABC transporter ABCB1 (MDR1, P-glycoprotein). The Oncologist, 12(8), 927-941.</ref>
{{Template:ColorKey_Hydrophobic}}, {{Template:ColorKey_Polar}}
{{Template:ColorKey_Hydrophobic}}, {{Template:ColorKey_Polar}}
-
<scene name='69/699852/Hydrophobic_residues/4'>Click Here</scene>
+
<scene name='69/699852/Hydrophobic_residues/4'>Here</scene>
-
== Function ==
+
Gottesman, M. M., Pastan, I., & Ambudkar, S. V. (1996). P-glycoprotein and multidrug resistance. Current opinion in genetics & development, 6(5), 610-617.
-
== Disease ==
+
== History ==
-
== Relevance ==
+
== Structure ==
 +
 
 +
== Clinical Relevance ==
-
== Structural highlights ==
 
This is a sample scene created with SAT to <scene name="/12/3456/Sample/1">color</scene> by Group, and another to make <scene name="/12/3456/Sample/2">a transparent representation</scene> of the protein. You can make your own scenes on SAT starting from scratch or loading and editing one of these sample scenes.
This is a sample scene created with SAT to <scene name="/12/3456/Sample/1">color</scene> by Group, and another to make <scene name="/12/3456/Sample/2">a transparent representation</scene> of the protein. You can make your own scenes on SAT starting from scratch or loading and editing one of these sample scenes.

Revision as of 19:21, 23 April 2015

P-glycoprotein (ABCB1)

P-glycoprotein: Both domains at 3.4 Å resolution

Drag the structure with the mouse to rotate

References

  1. Aller, S., Yu, J., Ward, A., Weng, Y., Chittaboina, S., Zhuo, R., . . . Chang, G. (2009). Structure of P-Glycoprotein Reveals a Molecular Basis for Poly-Specific Drug Binding. Science, 323(5922), 1718-1722.
  2. He, L., & Liu, G. Q. (2002). Effects of various principles from Chinese herbal medicine on rhodamine123 accumulation in brain capillary endothelial cells. Acta Pharmacologica Sinica, 23(7), 591-596
  3. Marchetti, S., Mazzanti, R., Beijnen, J. H., & Schellens, J. H. (2007). Concise review: clinical relevance of drug–drug and herb–drug interactions mediated by the ABC transporter ABCB1 (MDR1, P-glycoprotein). The Oncologist, 12(8), 927-941.
Personal tools