Sandbox PgpWWC
From Proteopedia
(Difference between revisions)
Line 6: | Line 6: | ||
Gottesman, M. M., Pastan, I., & Ambudkar, S. V. (1996). P-glycoprotein and multidrug resistance. Current opinion in genetics & development, 6(5), 610-617. | Gottesman, M. M., Pastan, I., & Ambudkar, S. V. (1996). P-glycoprotein and multidrug resistance. Current opinion in genetics & development, 6(5), 610-617. | ||
- | |||
- | == Function and Expression == | ||
- | |||
- | ABCB1 functions to expel xenotoxins from the body into bile, urine, and the intestinal lumen.<ref name="Marchetti"> | ||
- | function | ||
- | genetics | ||
- | interindividual variance | ||
== History == | == History == | ||
== Structure == | == Structure == | ||
- | |||
ABCB1 is located in the cellular membrane, adopting an inward-facing "V-shaped" structure. Since the hydrophobic substrates are hydrophobic and can partition into the lipid bilayer, research suggests that substrate enters ABCB1 through two portals within the lipid bilayer.<ref name="Aller" /> When a substrate binds to the binding site, a conformational change causes the protein to open to the outside of the cell, releasing the substrate. ATP is then hydrolyzed to re-induce the inward-facing conformation in preparation for the binding of another substrate compound from the bilayer.<ref>Chufan, E. E., Sim, H. M., & Ambudkar, S. V. (2014). Chapter Three – Molecular Basis of the Polyspecificity of P-Glycoprotein (ABCB1): Recent Biochemical and Structural Studies. Advances in Cancer Research, 125, 71-96.</ref> This efflux of substrate out of the cell prevents the accumulation of potentially toxic xenobiotics; however, this effective expulsion of a wide variety of substrates causes the multi-drug resistance. | ABCB1 is located in the cellular membrane, adopting an inward-facing "V-shaped" structure. Since the hydrophobic substrates are hydrophobic and can partition into the lipid bilayer, research suggests that substrate enters ABCB1 through two portals within the lipid bilayer.<ref name="Aller" /> When a substrate binds to the binding site, a conformational change causes the protein to open to the outside of the cell, releasing the substrate. ATP is then hydrolyzed to re-induce the inward-facing conformation in preparation for the binding of another substrate compound from the bilayer.<ref>Chufan, E. E., Sim, H. M., & Ambudkar, S. V. (2014). Chapter Three – Molecular Basis of the Polyspecificity of P-Glycoprotein (ABCB1): Recent Biochemical and Structural Studies. Advances in Cancer Research, 125, 71-96.</ref> This efflux of substrate out of the cell prevents the accumulation of potentially toxic xenobiotics; however, this effective expulsion of a wide variety of substrates causes the multi-drug resistance. | ||
Revision as of 15:44, 29 April 2015
P-glycoprotein (ABCB1)
|
References
- ↑ 1.0 1.1 1.2 Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, Harrell PM, Trinh YT, Zhang Q, Urbatsch IL, Chang G. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science. 2009 Mar 27;323(5922):1718-22. PMID:19325113 doi:323/5922/1718
- ↑ He L, Liu GQ. Effects of various principles from Chinese herbal medicine on rhodamine123 accumulation in brain capillary endothelial cells. Acta Pharmacol Sin. 2002 Jul;23(7):591-6. PMID:12100750
- ↑ Marchetti S, Mazzanti R, Beijnen JH, Schellens JH. Concise review: Clinical relevance of drug drug and herb drug interactions mediated by the ABC transporter ABCB1 (MDR1, P-glycoprotein). Oncologist. 2007 Aug;12(8):927-41. PMID:17766652 doi:http://dx.doi.org/10.1634/theoncologist.12-8-927
- ↑ Chufan, E. E., Sim, H. M., & Ambudkar, S. V. (2014). Chapter Three – Molecular Basis of the Polyspecificity of P-Glycoprotein (ABCB1): Recent Biochemical and Structural Studies. Advances in Cancer Research, 125, 71-96.