Talk:SCF-c-Kit
From Proteopedia
(Difference between revisions)
Line 12: | Line 12: | ||
- | + | the D1-D2-D3 region of KIT might be a functional unit that is poised for SCF binding, thus leading to subsequent KIT dimerization which is driven by dimeric SCF molecules. In addition, while the overall structure of SCF bound to KIT is similar to the structure of free SCF, there are differences in the angle between the two protomers, in the conformations of the connecting loops, and in the structures of the flexible N terminus of the molecule. | |
- | + | ||
The structure is also characterized by the existence of a large cavity at the center of the complex. Each protomer of SCF binds to a single KIT molecule and that receptor dimerization is driven by SCF dimers, leading to additional receptor-receptor interactions. | The structure is also characterized by the existence of a large cavity at the center of the complex. Each protomer of SCF binds to a single KIT molecule and that receptor dimerization is driven by SCF dimers, leading to additional receptor-receptor interactions. | ||
+ | |||
== Relevance == | == Relevance == | ||
Revision as of 11:54, 5 May 2015
Introduction)
|
References
- ↑ Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
- ↑ Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644