User:Rana Saad/The human GABAb receptor
From Proteopedia
(Difference between revisions)
| Line 10: | Line 10: | ||
The GABA<sub>B</sub> receptor causes the opening of the K<sup>+</sup> channels in the postsynaptic membrane, bringing the neuron closer to the [https://www.youtube.com/watch?v=4kx9_0YwShE equilibrium potential] of K<sup>+</sup>, producing [http://en.wikipedia.org/wiki/Hyperpolarization_(biology) hyperpolarization]. As a result the Ca<sup>+2</sup> channels in the presynaptic terminal close and neurotransmitter release stops. GABA<sub>B</sub> can also reduce the activity of adenylyl cyclase and decrease the cell’s conductance to Ca<sup>+2</sup>.[http://physrev.physiology.org/content/84/3/835.short]. | The GABA<sub>B</sub> receptor causes the opening of the K<sup>+</sup> channels in the postsynaptic membrane, bringing the neuron closer to the [https://www.youtube.com/watch?v=4kx9_0YwShE equilibrium potential] of K<sup>+</sup>, producing [http://en.wikipedia.org/wiki/Hyperpolarization_(biology) hyperpolarization]. As a result the Ca<sup>+2</sup> channels in the presynaptic terminal close and neurotransmitter release stops. GABA<sub>B</sub> can also reduce the activity of adenylyl cyclase and decrease the cell’s conductance to Ca<sup>+2</sup>.[http://physrev.physiology.org/content/84/3/835.short]. | ||
=='''''Structure'''''== | =='''''Structure'''''== | ||
| + | [[Image:GABAb.receptor.cartoon2.png|thumb|150px]] | ||
| + | |||
GABA<sub>B</sub> functions as an obligatory heterodimer subunit of GABA<sub>B1</sub> (GBR1) and GABA<sub>B2</sub> (GBR2). GBR1 is responsible for ligand-binding. GBR2, on the other hand, is responsible for G protein coupling subunits. The GABA<sub>B</sub> receptor is one of only a few obligate receptor heterodimers currently known. There is no crystal or NMR structure of the complete protein, but the extracellular and intracellular domains of it . | GABA<sub>B</sub> functions as an obligatory heterodimer subunit of GABA<sub>B1</sub> (GBR1) and GABA<sub>B2</sub> (GBR2). GBR1 is responsible for ligand-binding. GBR2, on the other hand, is responsible for G protein coupling subunits. The GABA<sub>B</sub> receptor is one of only a few obligate receptor heterodimers currently known. There is no crystal or NMR structure of the complete protein, but the extracellular and intracellular domains of it . | ||
| Line 55: | Line 57: | ||
Tyr118Ala: Impairs interaction with GABBR1. Decreases signaling via G-proteins. | Tyr118Ala: Impairs interaction with GABBR1. Decreases signaling via G-proteins. | ||
| - | [[Image:GABAb.receptor.cartoon2.png|300px]] | ||
Revision as of 21:21, 7 July 2015
| |||||||||||


