User:Anthony Milto/Sandbox 1

From Proteopedia

< User:Anthony Milto(Difference between revisions)
Jump to: navigation, search
Current revision (21:57, 28 October 2015) (edit) (undo)
 
Line 11: Line 11:
==DNA Interaction ==
==DNA Interaction ==
-
MyoD, along with most other bHLH proteins, recognizes the concensus DNA sequence CAN NTG, where N can be any base. This sequence is known as the E-box and is bound by MyoD's <scene name='71/714943/Br_dna_interaction/4'>basic region</scene> (basic residues pictured in blue, acidic in red) in DNA's major groove. MyoD's basic region residues indirectly establish selectivity for specific E-box sequences by influencing the conformation in which the basic region binds DNA. There are <scene name='71/714943/Dna_interacting_aas/1'>four residues</scene> responsible for the DNA interaction that provides MyoD's myogenic effect: Arg111, Ala114, Thr115, and Lys124. The former three residues directly contact the bases in DNA's major groove, while the latter likely interacts with the backbone phosphate groups <ref>Kophengnavong, T., Michnowicz, J. E., & Blackwell, T. K. Establishment of Distinct MyoD, E2A, and Twist DNA Binding Specificities by Different Basic Region-DNA Conformations. Molecular and Cellular Biology, '''2000''', 20. 261–272.</ref>.
+
MyoD, along with most other bHLH proteins, recognizes the consensus DNA sequence CAN NTG, where N can be any base. This sequence is known as the <scene name='71/714943/E-box/2'>E-box</scene> and is bound by MyoD's <scene name='71/714943/Br_dna_interaction/4'>basic region</scene> (basic residues pictured in blue, acidic in red) in DNA's major groove. MyoD's basic region residues indirectly establish selectivity for specific E-box sequences by influencing the conformation in which the basic region binds DNA. There are <scene name='71/714943/Dna_interacting_aas/1'>four residues</scene> responsible for the DNA interaction that provides MyoD's myogenic effect: Arg111, Ala114, Thr115, and Lys124. The lysine and arginine residues are situated near the backbone of the DNA and interact with the backbone phosphate groups and create a type of phosphate clamp, while the alanine and threonine are in DNA's major groove and interact with the DNA's bases <ref>Kophengnavong, T., Michnowicz, J. E., & Blackwell, T. K. Establishment of Distinct MyoD, E2A, and Twist DNA Binding Specificities by Different Basic Region-DNA Conformations. Molecular and Cellular Biology, '''2000''', 20. 261–272.</ref>.
== Regulation ==
== Regulation ==

Current revision

MyoD

Crystal Structure of MyoD Homodimer bHLH Domain

Drag the structure with the mouse to rotate

References

  1. Phospho Site Plus. http://www.phosphosite.org/proteinAction.do?id=3637&showAllSites=true (accessed October 6, 2015)
  2. Jones S. An overview of the basic helix-loop-helix proteins. Genome Biol. 2004;5(6):226. Epub 2004 May 28. PMID:15186484 doi:http://dx.doi.org/10.1186/gb-2004-5-6-226
  3. Weintraub, H., Dwarki, V. J., Verma, I., Davis, R., Hollenberg, S., Snider, L., Lassar, A., Tapscott, S. J. Muscle-specific transcriptional activation by MyoD. Genes & Dev. 1991. 5. 1377-1386
  4. Kophengnavong, T., Michnowicz, J. E., & Blackwell, T. K. Establishment of Distinct MyoD, E2A, and Twist DNA Binding Specificities by Different Basic Region-DNA Conformations. Molecular and Cellular Biology, 2000, 20. 261–272.
  5. Jones S. An overview of the basic helix-loop-helix proteins. Genome Biol. 2004;5(6):226. Epub 2004 May 28. PMID:15186484 doi:http://dx.doi.org/10.1186/gb-2004-5-6-226
  6. Weintraub, H., Dwarki, V. J., Verma, I., Davis, R., Hollenberg, S., Snider, L., Lassar, A., Tapscott, S. J. Muscle-specific transcriptional activation by MyoD. Genes & Dev. 1991. 5. 1377-1386
  7. Yang Z, MacQuarrie KL, Analau E, Tyler AE, Dilworth FJ, Cao Y, Diede SJ, Tapscott SJ. MyoD and E-protein heterodimers switch rhabdomyosarcoma cells from an arrested myoblast phase to a differentiated state. Genes Dev. 2009 Mar 15;23(6):694-707. doi: 10.1101/gad.1765109. PMID:19299559 doi:http://dx.doi.org/10.1101/gad.1765109
  8. Hamamori, Y., Wu, H. Y., Sartorelli, V., & Kedes, L. The basic domain of myogenic basic helix-loop-helix (bHLH) proteins is the novel target for direct inhibition by another bHLH protein, Twist. Molecular and Cellular Biology. 1997. 17. 6563–6573.
  9. Micheli L, Leonardi L, Conti F, Maresca G, Colazingari S, Mattei E, Lira SA, Farioli-Vecchioli S, Caruso M, Tirone F. PC4/Tis7/IFRD1 stimulates skeletal muscle regeneration and is involved in myoblast differentiation as a regulator of MyoD and NF-kappaB. J Biol Chem. 2011 Feb 18;286(7):5691-707. doi: 10.1074/jbc.M110.162842. Epub 2010, Dec 2. PMID:21127072 doi:http://dx.doi.org/10.1074/jbc.M110.162842
  10. Sartorelli V, Huang J, Hamamori Y, Kedes L. Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Mol Cell Biol. 1997 Feb;17(2):1010-26. PMID:9001254
  11. Breitschopf K, Bengal E, Ziv T, Admon A, Ciechanover A. A novel site for ubiquitination: the N-terminal residue, and not internal lysines of MyoD, is essential for conjugation and degradation of the protein. EMBO J. 1998 Oct 15;17(20):5964-73. PMID:9774340 doi:http://dx.doi.org/10.1093/emboj/17.20.5964
  12. Song, A., Wang, Q., Goebl, M. G., & Harrington, M. A. (1998). Phosphorylation of Nuclear MyoD Is Required for Its Rapid Degradation. Molecular and Cellular Biology. 1998. 18. 4994–4999
  13. Arnold, H. H.; Braun, T. Targeted inactivation of myogenic factor genes reveals their role during mouse myogenesis: a review. Int. J. Dev. Biol. 1996. 40. 345-353

Proteopedia Page Contributors and Editors (what is this?)

Anthony Milto

Personal tools