User:Jessica Gauldin/Sandbox1
From Proteopedia
Line 21: | Line 21: | ||
Malfunction of dopamine receptors also plays a role in a wide array of other neurological problems. There is a delicate balance that must be maintained for the human brain to function at the peak of it’s ability. For example, the psychological disorder schizophrenia is believed to be caused in part by a malfunction in multiple dopamine receptors that result in much higher than normal levels of dopamine, whereas the debilitating disease Parkinson’s is believed to caused in part by the dopamine receptors failing to release a sufficient amount of the neurotransmitter. In the case of schizophrenia it is currently accepted that a wide range of the positive symptoms, including hallucinations and delusions, originate because of an increased level of subcortical dopamine which in turn augments the D2 receptors and leads to even more release in areas of the brain like the nucleus accumbens. Some of the negative effects which include inability to form sentences and lack of outward motivation are hypothesized to be triggered by the reduced activation of D1 receptors (Brisch et al, 201). Parkinson’s, on the other hand, is caused in part by the destruction of dopamine receptors and thus the loss of a critical amount of the neurotransmitter. Dopamine is vital in relaying messages from the brain to the muscular system and disrupting this mechanisms produces tremors and a lack of balance which are common symptoms of the disease (Kim, 2002). | Malfunction of dopamine receptors also plays a role in a wide array of other neurological problems. There is a delicate balance that must be maintained for the human brain to function at the peak of it’s ability. For example, the psychological disorder schizophrenia is believed to be caused in part by a malfunction in multiple dopamine receptors that result in much higher than normal levels of dopamine, whereas the debilitating disease Parkinson’s is believed to caused in part by the dopamine receptors failing to release a sufficient amount of the neurotransmitter. In the case of schizophrenia it is currently accepted that a wide range of the positive symptoms, including hallucinations and delusions, originate because of an increased level of subcortical dopamine which in turn augments the D2 receptors and leads to even more release in areas of the brain like the nucleus accumbens. Some of the negative effects which include inability to form sentences and lack of outward motivation are hypothesized to be triggered by the reduced activation of D1 receptors (Brisch et al, 201). Parkinson’s, on the other hand, is caused in part by the destruction of dopamine receptors and thus the loss of a critical amount of the neurotransmitter. Dopamine is vital in relaying messages from the brain to the muscular system and disrupting this mechanisms produces tremors and a lack of balance which are common symptoms of the disease (Kim, 2002). | ||
- | == == | ||
Revision as of 23:53, 16 November 2015
Dopamine Receptor
|
References
- ↑ Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
- ↑ Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
3. Beaulieu, Jean-Martin, and Gainetdinov, Raul R. "The Physiology, Signaling, and Pharmacology of Dopamine Receptors." Pharmacological Reviews 63.1 (2011): 182-217.
4. Brisch, Ralf, Arthur Saniotis, Rainer Wolf, Hendrik Bielau, Hans-Gert Bernstein, Johann Steiner, Bernhard Bogerts, Katharina Braun, Zbigniew Jankowski, Jaliya Kumaratilake, Maciej Henneberg, and Tomasz Gos. "The Role of Dopamine in Schizophrenia from a Neurobiological and Evolutionary Perspective: Old Fashioned, but Still in Vogue." Frontiers in Psychiatry. Frontiers Media S.A., 19 May 2014. Web. 16 Nov. 2015.
5. Brown, Justin. Drugs and Addiction. James Madison University. 14 Oct. Lecture. 2015.
6. Brown, Justin. Neurotransmitters. James Madison University. 16 Oct. Lecture. 2015.
7. "Dopamine." Dopamine. PubChem, 24 Oct. 2015. Web. 27 Oct. 2015.
8. "Dopamine Receptor." 2015. NCBI. Web. 15 Nov. 2015.
9. Granado, N., Ares-Santos, S., & Moratalla, R. (2013, May 27). The Role of Dopamine Receptors in the Neurotoxicity of Methamphetamine. NCBI Journal of Internal Medicine. 16 Nov 2015.
10. How Does Cocaine Produce its Effects? (n.d.). NIH National Institute of Drug Abuse. 16 Nov 2015.
11. Kalani, M., Vaidehi, N., Hall, S., Trabanino, R., Freddolino, P., Kalani, M., Floriano, W., Kam, V., Goddard, W.(2004). The predicted 3D structure of the human D2 dopamine receptor and the binding site and binding affinities for agonists and antagonists. Proceedings of the National Academy of Sciences, 101(11), 3815-3820. doi:10.1073/pnas.0400100101
12. Kim, Jong-Hoon, and Johnathan Auerbach. "Dopamine Neurons Derived from Embryonic Stem Cells Function in an Animal Model of Parkinson's Disease." Nature.com. Nature Publishing Group, 4 July 2002. Web. 16 Nov. 2015.
13. Kish, S. (2008, June 17). Pharmacologic Mechanisms of Crystal Meth. NCBI Canadian Medical Journal Association.16 Nov 2015.
14. Missale, C., Nash, S., Robinson, S., Jaber, M., & Caron, M. (1998). Dopamine Receptors: From Structure to Function. Physiological Reviews, 78(1), 189-225. 16 Nov 2015.
15. "Treatment Statistics." DrugFacts:. NIH, Mar. 2011. Web. 16 Nov. 2015.