703DSS

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 15: Line 15:
== Function ==
== Function ==
-
This receptor plays a role in multiple processes throughout the brain and gastrointestinal tract. First, this receptor is responsible for altering anxiety levels. Research has indicated that several 5-HT3 antagonists are responsible for lowering anxiety. These antagonists prevent serotonin from binding to the receptor and increase the level of serotonin in the synapse, ultimately lowering anxiety levels (Kurhe, Radhakrishnan, Thangaraj, & Gupta, 2014). Second, these receptors play a role in emesis. These receptors can be found at the end of the vagus nerve located in the digestive tract, and when serotonin binds there is a stimulation of the vomiting reflex causing individuals to become ill (“Serotonin - Receptors and effects”). Finally, 5-HT3 receptors are bound to mucosal endings in the stomach and upon their activation can trigger motor neurons found in the intestine (Galligan, 2002). Depending on what the function of the motor neurons are, processes like secretion and peristalsis can be altered.
+
This receptor plays a role in multiple processes throughout the brain and gastrointestinal tract. First, this receptor is responsible for altering anxiety levels. Research has indicated that several 5-HT3 antagonists are responsible for lowering anxiety. These antagonists prevent serotonin from binding to the receptor and increase the level of serotonin in the synapse, ultimately lowering anxiety levels<ref name="gupta">Gupta, D., Thangaraj, D., & Radhakrishnan, M. (2016). A novel 5HT3 antagonist 4i (N-(3-chloro-2-methylphenyl)quinoxalin-2-carboxamide) prevents diabetes-induced depressive phenotypes in mice: Modulation of serotonergic system. Behavioural Brain Research, 297, 41-50. doi:10.1016/j.bbr.2015.10.007</ref>. Second, these receptors play a role in emesis. These receptors can be found at the end of the vagus nerve located in the digestive tract, and when serotonin binds there is a stimulation of the vomiting reflex causing individuals to become ill<ref name="sero">Serotonin - Receptors and effects. (n.d.). Retrieved November 14, 2015, from http://www.pharmacorama.com/en/Sections/Serotonin_2_2.php</ref>. Finally, 5-HT3 receptors are bound to mucosal endings in the stomach and upon their activation can trigger motor neurons found in the intestine<ref name="galligan">Galligan, J. J. (2002). Ligand-gated ion channels in the enteric nervous system. Neurogastroenterology & Motility, 14(6), 611-623. doi: 10.1046/j.1365-2982.2002.00363.x</ref>. Depending on what the function of the motor neurons are, processes like secretion and peristalsis can be altered.
-
As previously mentioned this receptor has both extracellular and transmembrane domains, each serving a different function. The extracellular domain operates through ligand binding in which competitive inhibitors can bind and interfere with carrying out the functions mentioned. The transmembrane domain serves to help with ion selectivity and electrical conductance and if altered can also affect signaling of any of the processes mentioned (Thompson & Lummis, 2006).
+
As previously mentioned this receptor has both extracellular and transmembrane domains, each serving a different function. The extracellular domain operates through ligand binding in which competitive inhibitors can bind and interfere with carrying out the functions mentioned. The transmembrane domain serves to help with ion selectivity and electrical conductance and if altered can also affect signaling of any of the processes mentioned<ref name="thompson">Thompson, A. J., & Lummis, S. C. R. (2006). 5-HT3 receptors. Current Pharmaceutical Design, 12(28), 3615–3630.</ref>.
== Medical Implications ==
== Medical Implications ==

Revision as of 01:41, 7 December 2015

5-HT3a Receptor

5-HT3a receptor

Drag the structure with the mouse to rotate

References

  1. 1.0 1.1 Barnes, N., Hales, T., Lummis, S., & Peters, J. (2009). The 5-HT3 receptor – the relationship between structure and function. Neuropharmacology, 273-284
  2. Perumal, R., & Mahesh, R. (2006). Synthesis and biological evaluation of a novel structural type of serotonin 5-HT3 receptor antagonists. Bioorganic & Medicinal Chemistry Letters, 2769-2772.
  3. 3.0 3.1 Hassaine, G., Deluz, C., Grasso, L., Wyss, R., Tol, M., Hovius, R., . . . Nury, H. (2014). X-ray structure of the mouse serotonin 5-HT3 receptor. Nature, 276-281.
  4. Gupta, D., Thangaraj, D., & Radhakrishnan, M. (2016). A novel 5HT3 antagonist 4i (N-(3-chloro-2-methylphenyl)quinoxalin-2-carboxamide) prevents diabetes-induced depressive phenotypes in mice: Modulation of serotonergic system. Behavioural Brain Research, 297, 41-50. doi:10.1016/j.bbr.2015.10.007
  5. Serotonin - Receptors and effects. (n.d.). Retrieved November 14, 2015, from http://www.pharmacorama.com/en/Sections/Serotonin_2_2.php
  6. Galligan, J. J. (2002). Ligand-gated ion channels in the enteric nervous system. Neurogastroenterology & Motility, 14(6), 611-623. doi: 10.1046/j.1365-2982.2002.00363.x
  7. Thompson, A. J., & Lummis, S. C. R. (2006). 5-HT3 receptors. Current Pharmaceutical Design, 12(28), 3615–3630.

Galligan, J. J. (2002). Ligand-gated ion channels in the enteric nervous system. Neurogastroenterology & Motility, 14(6), 611-623. doi: 10.1046/j.1365-2982.2002.00363.x

Glennon, Richard A., Malgorzata Dukat, and Richard B. Westkaemper. (2000). Serotonin receptor subtypes and ligands. American College of Neuropsychopharmacology.

Gupta, D., Thangaraj, D., & Radhakrishnan, M. (2016). A novel 5HT3 antagonist 4i (N-(3-chloro-2-methylphenyl)quinoxalin-2-carboxamide) prevents diabetes-induced depressive phenotypes in mice: Modulation of serotonergic system. Behavioural Brain Research, 297, 41-50. doi:10.1016/j.bbr.2015.10.007

Hannon, J., & Hoyer, D. (2008). Research report: molecular biology of 5-HT receptors. Behavioural Brain Research, 195(Serotonin and cognition: mechanisms and applications), 198-213. doi:10.1016/j.bbr.2008.03.020

Kurhe, Y. V., Radhakrishnan, M., Thangaraj, D., & Gupta, D. (2014). Anti-anxiety effect of a novel 5-HT3 receptor antagonistN-(benzo[d]thiazol-2-yl)-3-ethoxyquinoxalin-2- carboxamide (6k) using battery tests for anxiety in mice. Indian Journal of Pharmacology, 46(1), 100–104. doi: 10.4103/0253-7613.125186

Morrison, T. R., Ricci, L. A., & Melloni, R. H., Jr. (2015). Aggression and anxiety in adolescent AAS-treated hamsters: A role for 5HT3 receptors. Pharmacology Biochemistry and Behavior, 134, 85-91. doi:10.1016/j.pbb.2015.05.001

Serotonin - Receptors and effects. (n.d.). Retrieved November 14, 2015, from http://www.pharmacorama.com/en/Sections/Serotonin_2_2.php

Thompson, A. J., & Lummis, S. C. R. (2006). 5-HT3 receptors. Current Pharmaceutical Design, 12(28), 3615–3630.

Barnes, N., Hales, T., Lummis, S., & Peters, J. (2009). The 5-HT3 receptor – the relationship between structure and function. Neuropharmacology, 273-284.

Hassaine, G., Deluz, C., Grasso, L., Wyss, R., Tol, M., Hovius, R., . . . Nury, H. (2014). X-ray structure of the mouse serotonin 5-HT3 receptor. Nature, 276-281.

Perumal, R., & Mahesh, R. (2006). Synthesis and biological evaluation of a novel structural type of serotonin 5-HT3 receptor antagonists. Bioorganic & Medicinal Chemistry Letters, 2769-2772.

Proteopedia Page Contributors and Editors (what is this?)

Julio Soriagalvarro

Personal tools