703DSS
From Proteopedia
Line 25: | Line 25: | ||
While 5-HT3 is a serotonin receptor, it also has the unique ability to regulate the release of other neurotransmitters, like dopamine. This is useful in the treatment of psychotic disorders such as schizophrenia, which is directly related to high levels of dopamine. Some anti-psychotic medications like Ondansetron and Clozapine are 5-HT3 antagonists; meaning it inhibits the receptor’s ability to function and in turn reduces the amount of serotonin and dopamine utilized by the body <ref name="thompson" />. By normalizing the concentration of dopamine in the body, the psychotic symptoms of schizophrenia diminish. | While 5-HT3 is a serotonin receptor, it also has the unique ability to regulate the release of other neurotransmitters, like dopamine. This is useful in the treatment of psychotic disorders such as schizophrenia, which is directly related to high levels of dopamine. Some anti-psychotic medications like Ondansetron and Clozapine are 5-HT3 antagonists; meaning it inhibits the receptor’s ability to function and in turn reduces the amount of serotonin and dopamine utilized by the body <ref name="thompson" />. By normalizing the concentration of dopamine in the body, the psychotic symptoms of schizophrenia diminish. | ||
- | Anxiety, depression, and aggression have been linked to the 5-HT3 receptor. A study conducted by Morrison, Ricci, and Melloni (2015)<ref name="more">Morrison, T. R., Ricci, L. A., & Melloni, R. H., Jr. (2015). Aggression and anxiety in adolescent AAS-treated hamsters: A role for 5HT3 receptors. Pharmacology Biochemistry and Behavior, 134, 85-91. doi:10.1016/j.pbb.2015.05.001</ref> demonstrated that when anabolic androgenic steroid (AAS) – a steroid that has similar effects as testosterone; increases aggressive behavior and decreases anxiousness– was injected into hamsters, the amount of 5-HT3 receptors in areas of the brain known to be associated with anxiety and aggression decreased. They also found that AAS-induced anxiety could be negatated with the activation of 5-HT3 receptors | + | Anxiety, depression, and aggression have been linked to the 5-HT3 receptor. A study conducted by Morrison, Ricci, and Melloni (2015)<ref name="more">Morrison, T. R., Ricci, L. A., & Melloni, R. H., Jr. (2015). Aggression and anxiety in adolescent AAS-treated hamsters: A role for 5HT3 receptors. Pharmacology Biochemistry and Behavior, 134, 85-91. doi:10.1016/j.pbb.2015.05.001</ref> demonstrated that when anabolic androgenic steroid (AAS) – a steroid that has similar effects as testosterone; increases aggressive behavior and decreases anxiousness– was injected into hamsters, the amount of 5-HT3 receptors in areas of the brain known to be associated with anxiety and aggression decreased. They also found that AAS-induced anxiety could be negatated with the activation of 5-HT3 receptors<ref name="more" />. However, other studies have shown that by deleting the 5-HT3 receptor gene in mice, anxious behavior increased<ref name="thompson" />. It is possible that the 5-HT3 receptor plays a role in both instigating and inhibiting anxiolytic behaviors, but more research needs to be done to be conclusive. The 5-HT3 receptor has also been linked to depression. In a study conducted on mice with diabetes-induced depression, it was found that by administering a 5-HT3 antagonist, serotonin levels were able to normalize and depressive symptoms decreased<ref name="gupta">. |
Another way the 5-HT3 receptor has been used in medicine is by aiding in the treatment of substance abuse. When human subjects with an alcohol or morphine addictions were administered a 5-HT3 antagonist, their levels of drug consumption decreased drastically (Thompson & Lummis, 2009). However, this decrease was not shown in subjects addicted to psychostimulants like cocaine. Most research done on treatment for addiction is on the level of cognitive behavioral changes implemented by a psychologist. By adding an 5-HT3 antagonist to the treatment plan in addition to cognitive behavioral therapy, the rate of relapse in patients can be predicted to decrease tremendously. | Another way the 5-HT3 receptor has been used in medicine is by aiding in the treatment of substance abuse. When human subjects with an alcohol or morphine addictions were administered a 5-HT3 antagonist, their levels of drug consumption decreased drastically (Thompson & Lummis, 2009). However, this decrease was not shown in subjects addicted to psychostimulants like cocaine. Most research done on treatment for addiction is on the level of cognitive behavioral changes implemented by a psychologist. By adding an 5-HT3 antagonist to the treatment plan in addition to cognitive behavioral therapy, the rate of relapse in patients can be predicted to decrease tremendously. |
Revision as of 01:53, 7 December 2015
5-HT3a Receptor
|
References
- ↑ 1.0 1.1 Barnes, N., Hales, T., Lummis, S., & Peters, J. (2009). The 5-HT3 receptor – the relationship between structure and function. Neuropharmacology, 273-284
- ↑ Perumal, R., & Mahesh, R. (2006). Synthesis and biological evaluation of a novel structural type of serotonin 5-HT3 receptor antagonists. Bioorganic & Medicinal Chemistry Letters, 2769-2772.
- ↑ 3.0 3.1 Hassaine, G., Deluz, C., Grasso, L., Wyss, R., Tol, M., Hovius, R., . . . Nury, H. (2014). X-ray structure of the mouse serotonin 5-HT3 receptor. Nature, 276-281.
- ↑ 4.0 4.1 Gupta, D., Thangaraj, D., & Radhakrishnan, M. (2016). A novel 5HT3 antagonist 4i (N-(3-chloro-2-methylphenyl)quinoxalin-2-carboxamide) prevents diabetes-induced depressive phenotypes in mice: Modulation of serotonergic system. Behavioural Brain Research, 297, 41-50. doi:10.1016/j.bbr.2015.10.007
- ↑ Serotonin - Receptors and effects. (n.d.). Retrieved November 14, 2015, from http://www.pharmacorama.com/en/Sections/Serotonin_2_2.php
- ↑ Galligan, J. J. (2002). Ligand-gated ion channels in the enteric nervous system. Neurogastroenterology & Motility, 14(6), 611-623. doi: 10.1046/j.1365-2982.2002.00363.x
- ↑ 7.0 7.1 7.2 7.3 Thompson, A. J., & Lummis, S. C. R. (2006). 5-HT3 receptors. Current Pharmaceutical Design, 12(28), 3615–3630.
- ↑ 8.0 8.1 Morrison, T. R., Ricci, L. A., & Melloni, R. H., Jr. (2015). Aggression and anxiety in adolescent AAS-treated hamsters: A role for 5HT3 receptors. Pharmacology Biochemistry and Behavior, 134, 85-91. doi:10.1016/j.pbb.2015.05.001
Galligan, J. J. (2002). Ligand-gated ion channels in the enteric nervous system. Neurogastroenterology & Motility, 14(6), 611-623. doi: 10.1046/j.1365-2982.2002.00363.x
Glennon, Richard A., Malgorzata Dukat, and Richard B. Westkaemper. (2000). Serotonin receptor subtypes and ligands. American College of Neuropsychopharmacology.
Gupta, D., Thangaraj, D., & Radhakrishnan, M. (2016). A novel 5HT3 antagonist 4i (N-(3-chloro-2-methylphenyl)quinoxalin-2-carboxamide) prevents diabetes-induced depressive phenotypes in mice: Modulation of serotonergic system. Behavioural Brain Research, 297, 41-50. doi:10.1016/j.bbr.2015.10.007
Hannon, J., & Hoyer, D. (2008). Research report: molecular biology of 5-HT receptors. Behavioural Brain Research, 195(Serotonin and cognition: mechanisms and applications), 198-213. doi:10.1016/j.bbr.2008.03.020
Kurhe, Y. V., Radhakrishnan, M., Thangaraj, D., & Gupta, D. (2014). Anti-anxiety effect of a novel 5-HT3 receptor antagonistN-(benzo[d]thiazol-2-yl)-3-ethoxyquinoxalin-2- carboxamide (6k) using battery tests for anxiety in mice. Indian Journal of Pharmacology, 46(1), 100–104. doi: 10.4103/0253-7613.125186
Morrison, T. R., Ricci, L. A., & Melloni, R. H., Jr. (2015). Aggression and anxiety in adolescent AAS-treated hamsters: A role for 5HT3 receptors. Pharmacology Biochemistry and Behavior, 134, 85-91. doi:10.1016/j.pbb.2015.05.001
Serotonin - Receptors and effects. (n.d.). Retrieved November 14, 2015, from http://www.pharmacorama.com/en/Sections/Serotonin_2_2.php
Thompson, A. J., & Lummis, S. C. R. (2006). 5-HT3 receptors. Current Pharmaceutical Design, 12(28), 3615–3630.
Barnes, N., Hales, T., Lummis, S., & Peters, J. (2009). The 5-HT3 receptor – the relationship between structure and function. Neuropharmacology, 273-284.
Hassaine, G., Deluz, C., Grasso, L., Wyss, R., Tol, M., Hovius, R., . . . Nury, H. (2014). X-ray structure of the mouse serotonin 5-HT3 receptor. Nature, 276-281.
Perumal, R., & Mahesh, R. (2006). Synthesis and biological evaluation of a novel structural type of serotonin 5-HT3 receptor antagonists. Bioorganic & Medicinal Chemistry Letters, 2769-2772.