703DSS
From Proteopedia
Line 29: | Line 29: | ||
Another way the 5-HT3 receptor has been used in medicine is by aiding in the treatment of substance abuse. When human subjects with an alcohol or morphine addictions were administered a 5-HT3 antagonist, their levels of drug consumption decreased drastically<ref name="thompson" />. However, this decrease was not shown in subjects addicted to psychostimulants like cocaine. Most research done on treatment for addiction is on the level of cognitive behavioral changes implemented by a psychologist. By adding an 5-HT3 antagonist to the treatment plan in addition to cognitive behavioral therapy, the rate of relapse in patients can be predicted to decrease tremendously. | Another way the 5-HT3 receptor has been used in medicine is by aiding in the treatment of substance abuse. When human subjects with an alcohol or morphine addictions were administered a 5-HT3 antagonist, their levels of drug consumption decreased drastically<ref name="thompson" />. However, this decrease was not shown in subjects addicted to psychostimulants like cocaine. Most research done on treatment for addiction is on the level of cognitive behavioral changes implemented by a psychologist. By adding an 5-HT3 antagonist to the treatment plan in addition to cognitive behavioral therapy, the rate of relapse in patients can be predicted to decrease tremendously. | ||
- | One of the most successful treatments involving 5-HT3 receptors is the treatment of chemotherapy-induced vomiting. The 5-HT3 receptor plays a key role in gag reflex because of the high concentration of this particular receptor in the dorsal vagal complex of the digestive tract, an area responsible for vomit initiation<ref name="hannon">Hannon, J., & Hoyer, D. (2008). Research report: molecular biology of 5-HT receptors. Behavioural Brain Research, 195(Serotonin and cognition: mechanisms and applications), 198-213. doi:10.1016/j.bbr.2008.03.020</ref>. Studies have found that when there is a mutation in the promoter region of the 5-HT3B receptor gene, vomiting was reduced | + | One of the most successful treatments involving 5-HT3 receptors is the treatment of chemotherapy-induced vomiting. The 5-HT3 receptor plays a key role in gag reflex because of the high concentration of this particular receptor in the dorsal vagal complex of the digestive tract, an area responsible for vomit initiation<ref name="hannon">Hannon, J., & Hoyer, D. (2008). Research report: molecular biology of 5-HT receptors. Behavioural Brain Research, 195(Serotonin and cognition: mechanisms and applications), 198-213. doi:10.1016/j.bbr.2008.03.020</ref>. Studies have found that when there is a mutation in the promoter region of the 5-HT3B receptor gene, vomiting was reduced<ref name="thompson" />. Patients receiving chemotherapy are already subjecting their bodies to an immense amount of stress, so by being able to relieve them of some adverse side-effects, might contribute to an overall better outcome for the patient. |
- | The most well studied use of the 5-HT3 receptor is in combating IBS. The 5-HT3 receptor is found in high concentration on the mucosal membrane of the stomach, when this receptor is over activated, it can cause pain in the colon as well as an increased rate in the production of waste. When an antagonist of the receptor was administered to patients with IBS, their symptoms were alleviated | + | The most well studied use of the 5-HT3 receptor is in combating IBS. The 5-HT3 receptor is found in high concentration on the mucosal membrane of the stomach, when this receptor is over activated, it can cause pain in the colon as well as an increased rate in the production of waste. When an antagonist of the receptor was administered to patients with IBS, their symptoms were alleviated<ref name="thompson">. This demonstrates the wide variety of possible medical treatments that include the utilization of 5-HT3 receptors and how much more there still is to be discovered. |
Revision as of 01:58, 7 December 2015
5-HT3a Receptor
|
References
- ↑ 1.0 1.1 Barnes, N., Hales, T., Lummis, S., & Peters, J. (2009). The 5-HT3 receptor – the relationship between structure and function. Neuropharmacology, 273-284
- ↑ Perumal, R., & Mahesh, R. (2006). Synthesis and biological evaluation of a novel structural type of serotonin 5-HT3 receptor antagonists. Bioorganic & Medicinal Chemistry Letters, 2769-2772.
- ↑ 3.0 3.1 Hassaine, G., Deluz, C., Grasso, L., Wyss, R., Tol, M., Hovius, R., . . . Nury, H. (2014). X-ray structure of the mouse serotonin 5-HT3 receptor. Nature, 276-281.
- ↑ 4.0 4.1 Gupta, D., Thangaraj, D., & Radhakrishnan, M. (2016). A novel 5HT3 antagonist 4i (N-(3-chloro-2-methylphenyl)quinoxalin-2-carboxamide) prevents diabetes-induced depressive phenotypes in mice: Modulation of serotonergic system. Behavioural Brain Research, 297, 41-50. doi:10.1016/j.bbr.2015.10.007
- ↑ Serotonin - Receptors and effects. (n.d.). Retrieved November 14, 2015, from http://www.pharmacorama.com/en/Sections/Serotonin_2_2.php
- ↑ Galligan, J. J. (2002). Ligand-gated ion channels in the enteric nervous system. Neurogastroenterology & Motility, 14(6), 611-623. doi: 10.1046/j.1365-2982.2002.00363.x
- ↑ 7.0 7.1 7.2 7.3 7.4 7.5 7.6 Thompson, A. J., & Lummis, S. C. R. (2006). 5-HT3 receptors. Current Pharmaceutical Design, 12(28), 3615–3630.
- ↑ 8.0 8.1 Morrison, T. R., Ricci, L. A., & Melloni, R. H., Jr. (2015). Aggression and anxiety in adolescent AAS-treated hamsters: A role for 5HT3 receptors. Pharmacology Biochemistry and Behavior, 134, 85-91. doi:10.1016/j.pbb.2015.05.001
- ↑ Hannon, J., & Hoyer, D. (2008). Research report: molecular biology of 5-HT receptors. Behavioural Brain Research, 195(Serotonin and cognition: mechanisms and applications), 198-213. doi:10.1016/j.bbr.2008.03.020
Galligan, J. J. (2002). Ligand-gated ion channels in the enteric nervous system. Neurogastroenterology & Motility, 14(6), 611-623. doi: 10.1046/j.1365-2982.2002.00363.x
Glennon, Richard A., Malgorzata Dukat, and Richard B. Westkaemper. (2000). Serotonin receptor subtypes and ligands. American College of Neuropsychopharmacology.
Gupta, D., Thangaraj, D., & Radhakrishnan, M. (2016). A novel 5HT3 antagonist 4i (N-(3-chloro-2-methylphenyl)quinoxalin-2-carboxamide) prevents diabetes-induced depressive phenotypes in mice: Modulation of serotonergic system. Behavioural Brain Research, 297, 41-50. doi:10.1016/j.bbr.2015.10.007
Hannon, J., & Hoyer, D. (2008). Research report: molecular biology of 5-HT receptors. Behavioural Brain Research, 195(Serotonin and cognition: mechanisms and applications), 198-213. doi:10.1016/j.bbr.2008.03.020
Kurhe, Y. V., Radhakrishnan, M., Thangaraj, D., & Gupta, D. (2014). Anti-anxiety effect of a novel 5-HT3 receptor antagonistN-(benzo[d]thiazol-2-yl)-3-ethoxyquinoxalin-2- carboxamide (6k) using battery tests for anxiety in mice. Indian Journal of Pharmacology, 46(1), 100–104. doi: 10.4103/0253-7613.125186
Morrison, T. R., Ricci, L. A., & Melloni, R. H., Jr. (2015). Aggression and anxiety in adolescent AAS-treated hamsters: A role for 5HT3 receptors. Pharmacology Biochemistry and Behavior, 134, 85-91. doi:10.1016/j.pbb.2015.05.001
Serotonin - Receptors and effects. (n.d.). Retrieved November 14, 2015, from http://www.pharmacorama.com/en/Sections/Serotonin_2_2.php
Thompson, A. J., & Lummis, S. C. R. (2006). 5-HT3 receptors. Current Pharmaceutical Design, 12(28), 3615–3630.
Barnes, N., Hales, T., Lummis, S., & Peters, J. (2009). The 5-HT3 receptor – the relationship between structure and function. Neuropharmacology, 273-284.
Hassaine, G., Deluz, C., Grasso, L., Wyss, R., Tol, M., Hovius, R., . . . Nury, H. (2014). X-ray structure of the mouse serotonin 5-HT3 receptor. Nature, 276-281.
Perumal, R., & Mahesh, R. (2006). Synthesis and biological evaluation of a novel structural type of serotonin 5-HT3 receptor antagonists. Bioorganic & Medicinal Chemistry Letters, 2769-2772.